Table of Contents

1. DNT RESTful API and Event Scheme Guidelines
Conventions Used in These Guidelines
Zalando specific information
2. Principles
API Design Principles
3. General Guidelines
Must: Provide API Reference Definition using OpenAPI
Should: Provide User Manual Documentation
Must: Write APIs in U.S. English
4. Security
Must: Secure Endpoints with DNT Connect
5. Compatibility
Must: Don’t Break Backward Compatibility
Should: Prefer Compatible Extensions
Must: Prepare Clients To Not Crash On Compatible API Extensions
Should: Design APIs Conservatively
Must: Always Return JSON Objects As Top-Level Data Structures To Support Extensibility
Must: Treat Open API Definitions As Open For Extension By Default
Should: Used Open-Ended List of Values (x-extensible-enum) Instead of Enumerations
Should: Avoid Versioning
Must: Use Media Type Versioning
Must: Do Not Use URI Versioning
Should: Provide Version Information in OpenAPI Documentation
6. JSON Guidelines
Must: Use Consistent Property Names
Must: Property names must be snake_case (and never camelCase)
Must: Property names must match A[a-z_][a-z_0-9]*$
Should: Array names should be pluralized
Must: Use Consistent Property Values
Must: Boolean property values must not be null
Should: Null values should have their fields removed
Should: Empty array values should not be null
Should: Enumerations should be represented as Strings
Should: Date property values should conform to RFC 3399
May: Time durations and intervals could conform to ISO 8601
May: Standards could be used for Language, Country and Currency
7. API Naming
Must: Use lowercase separate words with hyphens for Path Segments

© © © © 0 00 I 9 O O O U b= B W W W W w wNhdDND PR RR R e

S Sy
=R R R, 0O O O 0O 0 o o



Must: Use snake_case (never camelCase) for Query Parameters
Must: Use Hyphenated HTTP Headers

Should: Prefer Hyphenated-Pascal-Case for HTTP header Fields
May: Use Standardized Headers

Must: Pluralize Resource Names

May: Use /api as first Path Segment

Must: Avoid Trailing Slashes

May: Use Conventional Query Strings

8. Resources

Must: Avoid Actions — Think About Resources

Should: Model complete business processes

Should: Define useful resources

Must: Keep URLs Verb-Free

Must: Use Domain-Specific Resource Names

Must: Identify resources and Sub-Resources via Path Segments
Should: Only Use UUIDs If Necessary

May: Consider Using (Non-) Nested URLs

Should: Limit number of Resources

Should: Limit number of Sub-Resource Levels

9. HTTP

Must: Use HTTP Methods Correctly

Must: Fulfill Safeness and Idempotency Properties

Must: Use Specific HTTP Status Codes

Must: Provide Error Documentation

Must: Use 207 for Batch or Bulk Requests

Must: Use 429 with Headers for Rate Limits

Should: Explicitly define the Collection Format of Query Parameters

10. Performance

Should: Reduce Bandwidth Needs and Improve Responsiveness
Should: Use gzip Compression

Should: Support Filtering of Resource Fields

Should: Allow Optional Embedding of Sub-Resources

11. Pagination

Must: Support Pagination
Should: Prefer Cursor-Based Pagination, Avoid Offset-Based Pagination

May: Use Pagination Links Where Applicable

12. Hypermedia

Must: Use REST Maturity Level 2
May: Use REST Maturity Level 3 - HATEOAS
Must: Use Common Hypertext Controls

Should: Use Simple Hypertext Controls for Pagination and Self-References

12
12
12
12
12
12
13
13
13
13
14
14
14
14
14
15
16
16
16
16
16
20
20
22
23
24
24
25
25
25
25
27
28
28
28
29
30
30
30
31
32



Must: Not Use Link Headers with JSON entities
13. Data Formats
Must: Use JSON to Encode Structured Data
May: Use non JSON Media Types for Binary Data or Alternative Content Representations
Must: Use Standard Date and Time Formats
May: Use Standards for Country, Language and Currency Codes
Must: Define Format for Type Number and Integer
Should: Prefer standard Media type name application/json
14. Common Data Types
Should: Use a Common Money Object
Must: Use common field names and semantics
Must: Follow Hypertext Control Conventions
Must: Use Problem JSON
Must: Do not expose Stack Traces
15. Common Headers
Must: Use Content Headers Correctly
May: Use Content-Location Header
Should: Use Location Header instead of Content-Location Header
May: Use the Prefer header to indicate processing preferences
May: Consider using ETag together with If-(None-)Match header
16. Proprietary Headers
Must: Use Only the Specified Proprietary Zalando Headers
Must: Propagate Proprietary Headers
17. Deprecation
Must: Obtain Approval of Clients
Must: External Partners Must Agree on Deprecation Timespan
Must: Reflect Deprecation in API Definition
Must: Monitor Usage of Deprecated APIs
Should: Add a Warning Header to Responses
Should: Add Monitoring for Warning Header
Must: Not Start Using Deprecated APIs
18. API Operation
Must: Provide Online Access to OpenAPI Reference Definition
Should: Monitor API Usage
19. Events
Must: Treat Events as part of the service interface
Must: Make Events available for review
Must: Ensure Event Type schemas conform to Open API’s Schema Object
Must: Ensure that Events are registered as Event Types
Must: Ensure Events conform to a well-known Event Category

Must: Ensure that Events define useful business resources

32
32
33
33
33
33
34
34
35
35
36
39
39
40
40
40
40
41
41
42
43
44
45
46
46
46
46
46
47
47
47
47
47
48
48
49
49
49
50
53
57



Must: Events must not provide sensitive customer personal data

Must: Use the General Event Category to signal steps and arrival points in business processes

Must: Use Data Change Events to signal mutations

Should: Provide a means for explicit event ordering

Should: Use the hash partition strategy for Data Change Events
Should: Ensure that Data Change Events match API representations
Must: Permissions on events must correspond to API permissions
Must: Indicate ownership of Event Types

Must: Define Event Payloads in accordance with the overall Guidelines
Must: Maintain backwards compatibility for Events

Should: Avoid additionalProperties in event type definitions

Must: Use unique Event identifiers

Should: Design for idempotent out-of-order processing

Must: Follow conventions for Event Type names

Must: Prepare for duplicate Events

Appendix A: References

OpenAPI Specification

Publications, specifications and standards
Dissertations

Books

Blogs

Appendix B: Tooling

API First Integrations

Support Libraries

Appendix C: Changelog

Rule Changes

57
58
58
58
39
39
60
60
60
61
61
62
62
63
63
63
63
63
64
64
64
64
64
65
65
65






1. DNT RESTful API and Event Scheme
Guidelines

Den Norske Turistforening / The Norwegian Trekking Association / dnt.no
Other formats: PDF, EPUB3
Based on the excellent work by Zalando.

<div id="table-of-contents"></div>

Conventions Used in These Guidelines

The requirement level keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" used in this document
(case insensitive) are to be interpreted as described in RFC 2119.

Zalando specific information

The purpose of our “RESTful API guidelines” is to define standards to successfully establish
“consistent API look and feel” quality.

These guidelines will, to some extent, remain work in progress as our work evolves.
In case guidelines are changing, following rules apply:

* existing APIs don’t have to be changed, but we recommend it
» clients of existing APIs have to cope with these APIs based on outdated rules

* new APIs have to respect the current guidelines

Furthermore you should keep in mind that once an API becomes public externally available, it has
to be re-reviewed and changed according to current guidelines - for sake of overall consistency.

2. Principles

API Design Principles

Comparing SOA web service interfacing style of SOAP vs. REST, the former tend to be centered
around operations that are usually use-case specific and specialized. In contrast, REST is centered
around business (data) entities exposed as resources that are identified via URIs and can be
manipulated via standardized CRUD-like methods using different representations, self-descriptive
messages and hypermedia. RESTful APIs tend to be less use-case specific and comes with less rigid
client / server coupling and are more suitable as a platform interface being open for diverse client
applications.


https://www.dnt.no/
dnt-guidelines.pdf
dnt-guidelines.epub
https://github.com/zalando/restful-api-guidelines
https://www.ietf.org/rfc/rfc2119.txt

* We prefer REST-based APIs with JSON payloads

* We prefer systems to be truly RESTful [1: Per definition of R.Fielding REST APIs have to support
HATEOAS (maturity level 3). Our guidelines do not strongly advocate for full REST compliance,
but limited hypermedia usage, e.g. for pagination (see Hypermedia). However, we still use the
term "RESTful API", due to the absence of an alternative established term and to keep it like the
very majority of web service industry that also use the term for their REST approximations — in
fact, in today’s industry full HATEOAS compliant APIs are a very rare exception.]

We apply the RESTful web service principles to all kind of application components, whether they
provide functionality via the Internet or via the intranet as larger application elements. We strive to
build interoperating distributed systems that different teams can evolve in parallel.

An important principle for (RESTful) API design and usage is Postel’s Law, aka the Robustness
Principle (RFC 1122):

* Be liberal in what you accept, be conservative in what you send

Readings: Read the following to gain additional insight on the RESTful service architecture
paradigm and general RESTful API design style:

* Book: Irresistable APIs: Designing web APIs that developers will love

Book: REST in Practice: Hypermedia and Systems Architecture

Book: Build APIs You Won’t Hate
* InfoQ eBook: Web APIs: From Start to Finish

» Lessons-learned blog: Thoughts on RESTful API Design

Fielding Dissertation: Architectural Styles and the Design of Network-Based Software
Architectures

3. General Guidelines

The titles are marked with the corresponding labels: Must:, Should:, May:.

Must: Provide API Reference Definition using OpenAPI

We use the OpenAPI specification (aka Swagger spec) as standard for our REST API definitions. You
have to provide the API definition in YAML format (instead of JSON) for the OpenAPI API
definition files due to its improved readability.

Please stick to version 2.0 of the specification for now, until we succeed to update all our tooling to
support the upcoming version 3.0.

We also call the OpenAPI API definition the "API Reference definition" (or "API definition"); as a
reference manual it provides all information needed by an experienced API client developer to use
this API.

The OpenAPI API specification file should be subject of version control together with source code


http://en.wikipedia.org/wiki/Robustness_principle
http://en.wikipedia.org/wiki/Robustness_principle
https://www.amazon.de/Irresistible-APIs-Designing-that-developers/dp/1617292559
http://www.amazon.de/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://leanpub.com/build-apis-you-wont-hate
http://www.infoq.com/minibooks/emag-web-api
http://restful-api-design.readthedocs.org/en/latest/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://swagger.io/specification/

management. Services also have to support an endpoint to access the API Reference definition for
their external API(s).

Should: Provide User Manual Documentation

In addition to the API as OpenAPI Reference Definition, it’s good practice to provide an API User
Manual documentation to improve client developer experience, especially of engineers that are less
experienced in using this API. A helpful API User Manual typically describes the following API
aspects:

» API’s scope, purpose and use cases
» concrete examples of API usage
* edge cases, error situation details and repair hints

 architecture context and major dependencies - including figures and sequence flows

The User Manual must be posted online, e.g. via GitHub Enterprise pages, on specific team web
servers, or as a Google doc. And don’t forget to include a link to this user manual into your OpenAPI
definition using the “externalDocs” property.

Must: Write APIs in U.S. English

4. Security

Must: Secure Endpoints with DNT Connect

If the API needs authentication, use DNT Connect in Sherpa as the OAuth2 provider. Sherpa handles
OAuth2 clients, generates access tokens and the API service must verify the tokens towards Sherpa.

[OAuth2 flow] | https://s3-eu-west-1.amazonaws.com/turistforeningen/API+security+flow+(simple).jpg
5. Compatibility

Must: Don’t Break Backward Compatibility

Change APIs, but keep all consumers running. Consumers usually have independent release
lifecycles, focus on stability, and avoid changes that do not provide additional value. APIs are
contracts between service providers and service consumers that cannot be broken via unilateral
decisions.

There are two techniques to change APIs without breaking them:

« follow rules for compatible extensions

* introduce new API versions and still support older versions



We strongly encourage using compatible API extensions and discourage versioning. The below
guideline rules for service providers and consumers enable us (having Postel’s Law in mind) to
make compatible changes without versioning.

Hint: Please note that the compatibility guarantees are for the "on the wire" format. Binary or
source compatibility of code generated from an API definition is not covered by these rules. If client
implementations update their generation process to a new version of the API definition, it has to be
expected that code changes are necessary.

Should: Prefer Compatible Extensions

API designers should apply the following rules to evolve RESTful APIs for services in a backward-
compatible way:
* Add only optional, never mandatory fields.

* Never change the semantic of fields (e.g. changing the semantic from customer-number to
customer-id, as both are different unique customer keys)

* Input fields may have (complex) constraints being validated via server-side business logic.
Never change the validation logic to be more restrictive and make sure that all constraints a
clearly defined in description.

* Enum ranges can be reduced when used as input parameters, only if the server is ready to
accept and handle old range values too. Enum range can be reduced when used as output
parameters.

* Enum ranges cannot not be extended when used for output parameters — clients may not be
prepared to handle it. However, enum ranges can be extended when used for input parameters.

» Use x-extensible-enum, if range is used for output parameters and likely to be extended with
growing functionality. It defines an open list of explicit values and clients must be agnostic to
new values.

» Support redirection in case an URL has to change (301 Moved Permanently).

Must: Prepare Clients To Not Crash On Compatible API
Extensions

Service clients should apply the robustness principle:
* Be conservative with API requests and data passed as input, e.g. avoid to exploit definition
deficits like passing megabytes for strings with unspecified maximum length.

* Be tolerant in processing and reading data of API responses, more specifically...
Service clients must be prepared for compatible API extensions of service providers:

* Be tolerant with unknown fields in the payload (see also Fowler’s "TolerantReader" post), i.e.
ignore new fields but do not eliminate them from payload if needed for subsequent PUT
requests.

* Be prepared that x-extensible-enum return parameter may deliver new values; either be


https://en.wikipedia.org/wiki/HTTP_301
http://martinfowler.com/bliki/TolerantReader.html

agnostic or provide default behavior for unknown values.

* Be prepared to handle HTTP status codes not explicitly specified in endpoint definitions. Note
also, that status codes are extensible. Default handling is how you would treat the
corresponding xX00 code (see RFC7231 Section 6).

» Follow the redirect when the server returns HTTP status 301 Moved Permanently.

Should: Design APIs Conservatively

Designers of service provider APIs should be conservative and accurate in what they accept from
clients:

* Unknown input fields in payload or URL should not be ignored; servers should provide error
feedback to clients via an HTTP 400 response code.

* Be accurate in defining input data constraints (like formats, ranges, lengths etc.) — and check
constraints and return dedicated error information in case of violations.

* Prefer being more specific and restrictive (if compliant to functional requirements), e.g. by
defining length range of strings. It may simplify implementation while providing freedom for
further evolution as compatible extensions.

Not ignoring unknown input fields is a specific deviation from Postel’s Law (e.g. see also

The Robustness Principle Reconsidered) and a strong recommendation. Servers might want to take
different approach but should be aware of the following problems and be explicit in what is
supported:

* Ignoring unknown input fields is actually not an option for PUT, since it becomes asymmetric
with subsequent GET response and HTTP is clear about the PUT "replace" semantics and default
roundtrip expectations (see RFC7231 Section 4.3.4). Note, accepting (i.e. not ignoring) unknown
input fields and returning it in subsequent GET responses is a different situation and compliant
to PUT semantics.

* Certain client errors cannot be recognized by servers, e.g. attribute name typing errors will be
ignored without server error feedback. The server cannot differentiate between the client
intentionally providing an additional field versus the client sending a mistakenly named field,
when the client’s actual intent was to provide an optional input field.

» Future extensions of the input data structure might be in conflict with already ignored fields
and, hence, will not be compatible, i.e. break clients that already use this field but with different

type.

In specific situations, where a (known) input field is not needed anymore, it either can stay in the
API definition with "not used anymore" description or can be removed from the API definition as
long as the server ignores this specific parameter.


https://tools.ietf.org/html/rfc7231#section-6
https://en.wikipedia.org/wiki/HTTP_301
https://cacm.acm.org/magazines/2011/8/114933-the-robustness-principle-reconsidered/fulltext
https://tools.ietf.org/html/rfc7231#section-4.3.4

Must: Always Return JSON Objects As Top-Level Data
Structures To Support Extensibility

In a response body, you must always return a JSON object (and not e.g. an array) as a top level data
structure to support future extensibility. JSON objects support compatible extension by additional
attributes. This allows you to easily extend your response and e.g. add pagination later, without
breaking backwards compatibility.

Must: Treat Open API Definitions As Open For
Extension By Default

The Open API 2.0 specification is not very specific on default extensibility of objects, and redefines
JSON-Schema keywords related to extensibility, like additionalProperties. Following our overall
compatibility guidelines, Open API object definitions are considered open for extension by default
as per Section 5.18 "additionalProperties" of JSON-Schema.

When it comes to Open API 2.0, this means an additionalProperties declaration is not required to
make an object definition extensible:

* API clients consuming data must not assume that objects are closed for extension in the absence
of an additionalProperties declaration and must ignore fields sent by the server they cannot
process. This allows API servers to evolve their data formats.

» For API servers receiving unxpected data, the situation is slightly different. Instead of ignoring
fields, servers may reject requests whose entities contain undefined fields in order to signal to
clients that those fields would not be stored on behalf of the client. API designers must
document clearly how unexpected fields are handled for PUT, POST and PATCH requests.

API formats must not declare additionalProperties to be false, as this prevents objects being
extended in the future.

Note that this guideline concentrates on default extensibility and does not exclude the use of
additionalProperties with a schema as a value, which might be appropriate in some circumstances.

Should: Used Open-Ended List of Values (x-extensible-
enum) Instead of Enumerations

Enumerations are per definition closed sets of values, that are assumed to be complete and not
intended for extension. This closed principle of enumerations imposes compatibility issues when
an enumeration must be extended. To avoid these issues, we strongly recommend to use an open-
ended list of values instead of an enumeration unless:

1. the API has full control of the enumeration values, i.e. the list of values does not depend on any
external tool or interface, and

2. the list of value is complete with respect to any thinkable and unthinkable future feature.

To specify an open-ended list of values use the marker x-extensible-enum as follows:


http://json-schema.org/latest/json-schema-validation.html#rfc.section.5.18

deliver_methods:
type: string
x-extensible-enum:
- parcel
- letter
- email

Note: x-extensible-enum is not JSON Schema conform but will be ignored by most tools.

Should: Avoid Versioning

When changing your RESTful APIs, do so in a compatible way and avoid generating additional API
versions. Multiple versions can significantly complicate understanding, testing, maintaining,
evolving, operating and releasing our systems (supplementary reading).

If changing an API can’t be done in a compatible way, then proceed in one of these three ways:

e create a new resource (variant) in addition to the old resource variant

* create a new service endpoint — i.e. a new application with a new API (with a new domain
name)

* create a new API version supported in parallel with the old API by the same microservice

As we discourage versioning by all means because of the manifold disadvantages, we strongly
recommend to only use the first two approaches.

Must: Use Media Type Versioning

However, when API versioning is unavoidable, you have to design your multi-version RESTful APIs
using media type versioning (instead of URI versioning, see below). Media type versioning is less
tightly coupled since it supports content negotiation and hence reduces complexity of release
management.

Media type versioning: Here, version information and media type are provided together via the
HTTP Content-Type header — e.g. application/x.zalando.cart+json;version=2. For incompatible
changes, a new media type version for the resource is created. To generate the new representation
version, consumer and producer can do content negotiation using the HTTP Content-Type and
Accept headers. Note: This versioning only applies to the request and response content schema, not
to URI or method semantics.

In this example, a client wants only the new version of the response:
Accept: application/x.zalando.cart+json;version=2

A server responding to this, as well as a client sending a request with content should use the
Content-Type header, declaring that one is sending the new version:


http://martinfowler.com/articles/enterpriseREST.html

Content-Type: application/x.zalando.cart+json;version=2

Using header versioning should:

* include versions in request and response headers to increase visibility

* include Content-Type in the Vary header to enable proxy caches to differ between versions

Hint: Until an incompatible change is necessary, it is recommended to stay with the standard
application/json media type.

Hint: OpenAPI currently doesn’t support content negotiation, though a comment in this issue
mentions a workaround (using a fragment identifier that gets stripped off). Another way would be
to document just the new version, but let the server accept the old one (with the previous content-

type).

Further reading: API Versioning Has No "Right Way" provides an overview on different versioning
approaches to handle breaking changes without being opinionated.

Must: Do Not Use URI Versioning

With URI versioning a (major) version number is included in the path, e.g. /vl/customers. The
consumer has to wait until the provider has been released and deployed. If the consumer also
supports hypermedia links — even in their APIs — to drive workflows (HATEOAS), this quickly
becomes complex. So does coordinating version upgrades — especially with hyperlinked service
dependencies — when using URL versioning. To avoid this tighter coupling and complexer release
management we do not use URI versioning, and go instead with media type versioning and content
negotiation (see above).

Should: Provide Version Information in OpenAPI
Documentation

Only the documentation, not the API itself, needs version information.

Example:

"swagger": "2.0",
"info": {
"title": "Parcel service API",
"description": "API for <...>",
"version": "1.0.0",
< uud

During a (possibly) long-running API review phase you need different versions of the API
description. These versions may include changes that are incompatible with earlier draft versions.
So we apply the following version schema MAJOR.MINOR.DRAFT that increments the...


https://github.com/OAI/OpenAPI-Specification/issues/146
https://github.com/OAI/OpenAPI-Specification/issues/146#issuecomment-117288707
https://blog.apisyouwonthate.com/api-versioning-has-no-right-way-f3c75457c0b7

* MAJOR version, when you make incompatible API changes
* MINOR version, when you add functionality in a backwards-compatible manner
* DRAFT version, when you make changes during the review phase that are not related to

production releases

We recommend using the DRAFT version only for unreleased API definitions that are still under
review; for example:

version 1.4.0 -- current version

version 1.4.1 -- first draft and call for review of API extensions compatible with
1.4.0

version 1.4.2 -- second draft and call for review of API extensions that are still
compatible with 1.4.0 but possibly incompatible with 1.4.1

version 1.5.0 -- approved version for implementation and release

version 1.5.1 -- first draft for next review and API change cycle; compatible with
1.4.0 and 1.5.0

Hint: This versioning scheme differs in the less strict DRAFT aspect from semantic version
information used for released APIs and service applications.

6. JSON Guidelines

These guidelines provides recommendations for defining JSON data at Zalando. JSON here refers to
RFC 7159 (which updates RFC 4627), the “application/json” media type and custom JSON media
types defined for APIs. The guidelines clarifies some specific cases to allow Zalando JSON data to
have an idiomatic form across teams and services.

Must: Use Consistent Property Names

Must: Property names must be snake_case (and never
camelCase)

No established industry standard exists, but many popular Internet companies prefer snake_case:
e.g. GitHub, Stack Exchange, Twitter. Others, like Google and Amazon, use both - but not only
camelCase. It’s essential to establish a consistent look and feel such that JSON looks as if it came
from the same hand.

Must: Property names must match *[a-z_][a-z_0-9]*$

Property names are restricted to ASCII strings. The first character must be a letter, or an
underscore, and subsequent characters can be a letter, an underscore, or a number.

(It is recommended to use _ at the start of property names only for keywords like _1inks.)


http://semver.org
http://semver.org
http://www.rfc-editor.org/rfc/rfc7159.txt
https://www.ietf.org/rfc/rfc4627.txt

Should: Array names should be pluralized

To indicate they contain multiple values prefer to pluralize array names. This implies that object
names should in turn be singular.

Must: Use Consistent Property Values

Must: Boolean property values must not be null

Schema based JSON properties that are by design booleans must not be presented as nulls. A
boolean is essentially a closed enumeration of two values, true and false. If the content has a
meaningful null value, strongly prefer to replace the boolean with enumeration of named values or
statuses - for example accepted_terms_and_conditions with true or false can be replaced with
terms_and_conditions with values yes, no and unknown.

Should: Null values should have their fields removed

Swagger/OpenAPI, which is in common use, doesn’t support null field values (it does allow omitting
that field completely if it is not marked as required). However that doesn’t prevent clients and
servers sending and receiving those fields with null values. Also, in some cases null may be a
meaningful value - for example, JSON Merge Patch RFC 7382) using null to indicate property
deletion.

Should: Empty array values should not be null

Empty array values can unambiguously be represented as the empty list, [ ].

Should: Enumerations should be represented as
Strings

Strings are a reasonable target for values that are by design enumerations.

Should: Date property values should conform to RFC
3399

Use the date and time formats defined by RFC 3339:

+ for "date" use strings matching date-fullyear "-" date-month "-" date-mday, for example: 2015-
05-28

« for "date-time" use strings matching full-date "T" full-time, for example 2015-05-28714:07:171

Note that the OpenAPI format "date-time" corresponds to "date-time" in the RFC) and 2015-05-28 for
a date (note that the OpenAPI format "date" corresponds to "full-date" in the RFC). Both are specific
profiles, a subset of the international standard ISO 8601.

10


https://tools.ietf.org/html/rfc7386
http://tools.ietf.org/html/rfc3339#section-5.6
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#data-types
http://en.wikipedia.org/wiki/ISO_8601

A zone offset may be used (both, in request and responses) —this is simply defined by the
standards. However, we encourage restricting dates to UTC and without offsets. For example 2015-
05-28T14:07:177 rather than 2015-05-28T14:07:17+00:00. From experience we have learned that zone
offsets are not easy to understand and often not correctly handled. Note also that zone offsets are
different from local times that might be including daylight saving time. Localization of dates should
be done by the services that provide user interfaces, if required.

When it comes to storage, all dates should be consistently stored in UTC without a zone offset.
Localization should be done locally by the services that provide user interfaces, if required.

Sometimes it can seem data is naturally represented using numerical timestamps, but this can
introduce interpretation issues with precision - for example whether to represent a timestamp as
1460062925, 1460062925000 or 1460062925.000. Date strings, though more verbose and requiring
more effort to parse, avoid this ambiguity.

May: Time durations and intervals could conform to
ISO 8601

Schema based JSON properties that are by design durations and intervals could be strings
formatted as recommended by ISO 8601 (Appendix A of RFC 3399 contains a grammar for
durations).

May: Standards could be used for Language, Country
and Currency

* ISO 3166-1-alpha2 country

(It’s "GB", not "UK", even though "UK" has seen some use at Zalando)

ISO 639-1 language code

BCP-47 (based on ISO 639-1) for language variants

ISO 4217 currency codes

7. API Naming

Must: Use lowercase separate words with hyphens for
Path Segments

Example:
/shipment-orders/{shipment-order-id}

This applies to concrete path segments and not the names of path parameters. For example
{shipment_order_id} would be ok as a path parameter.

11


https://tools.ietf.org/html/rfc3339#appendix-A
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://tools.ietf.org/html/bcp47
http://en.wikipedia.org/wiki/ISO_4217

Must: Use snake_case (never camelCase) for Query
Parameters

Examples:

customer_number, order_id, billing_address

Must: Use Hyphenated HTTP Headers

Should: Prefer Hyphenated-Pascal-Case for HTTP
header Fields

This is for consistency in your documentation (most other headers follow this convention). Avoid
camelCase (without hyphens). Exceptions are common abbreviations like “ID.”

Examples:

Accept-Encoding
Apply-To-Redirect-Ref
Disposition-Notification-Options
Original-Message-ID

See also: HTTP Headers are case-insensitive (RFC 7230).

May: Use Standardized Headers

Use this list and mention its support in your OpenAPI definition.

Must: Pluralize Resource Names

Usually, a collection of resource instances is provided (at least API should be ready here). The
special case of a resource singleton is a collection with cardinality 1.

May: Use /api as first Path Segment

In most cases, all resources provided by a service are part of the public APIL, and therefore should
be made available under the root “/” base path. If the service should also support non-public,
internal APIs — for specific operational support functions, for example — add “/api” as base path to
clearly separate public and non-public API resources.

12


http://tools.ietf.org/html/rfc7230#page-22
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Must: Avoid Trailing Slashes

The trailing slash must not have specific semantics. Resource paths must deliver the same results
whether they have the trailing slash or not.

May: Use Conventional Query Strings

If you provide query support for sorting, pagination, filtering functions or other actions, use the
following standardized naming conventions:

* ¢ — default query parameter (e.g. used by browser tab completion); should have an entity
specific alias, like sku

* limit — to restrict the number of entries. See Pagination section below. Hint: You can use size as
an alternate query string.

* cursor — Key-based page start. See Pagination section below.

» offset — numeric offset page start. See Pagination section below. Hint: In combination with
limit, you can use page as an alternative to offset.

* sort — comma-separated list of fields to sort. To indicate sorting direction, fields my prefixed
with + (ascending) or - (descending, default), e.g. /sales-orders?sort=+id

» fields — to retrieve a subset of fields. See Support Filtering of Resource Fields below.

* embed — to expand embedded entities (ie.: inside of an article entity, expand silhouette code into
the silhouette object). Implementing “expand” correctly is difficult, so do it with care.

8. Resources

Must: Avoid Actions — Think About Resources

REST is all about your resources, so consider the domain entities that take part in web service
interaction, and aim to model your API around these using the standard HTTP methods as
operation indicators. For instance, if an application has to lock articles explicitly so that only one
user may edit them, create an article lock with PUT or POST instead of using a lock action.

Request:
PUT /article-locks/{article-id}

The added benefit is that you already have a service for browsing and filtering article locks.

13



Should: Model complete business processes

An API should contain the complete business processes containing all resources representing the
process. This enables clients to understand the business process, foster a consistent design of the
business process, allow for synergies from description and implementation perspective, and
eliminates implicit invisible dependencies between APIs.

In addition, it prevents services from being designed as thin wrappers around databases, which
normally tends to shift business logic to the clients.

Should: Define useful resources

As a rule of thumb resources should be defined to cover 90% of all its client’s use cases. A useful
resource should contain as much information as necessary, but as little as possible. A great way to
support the last 10% is to allow clients to specify their needs for more/less information by
supporting filtering and embedding.

Must: Keep URLs Verb-Free

The API describes resources, so the only place where actions should appear is in the HTTP methods.
In URLs, use only nouns. Instead of thinking of actions (verbs), it’s often helpful to think about
putting a message in a letter box: e.g., instead of having the verb cancel in the url, think of sending a
message to cancel an order to the cancellations letter box on the server side.

Must: Use Domain-Specific Resource Names

API resources represent elements of the application’s domain model. Using domain-specific
nomenclature for resource names helps developers to understand the functionality and basic
semantics of your resources. It also reduces the need for further documentation outside the API
definition. For example, “sales-order-items” is superior to “order-items” in that it clearly indicates
which business object it represents. Along these lines, “items” is too general.

Must: Identify resources and Sub-Resources via Path
Segments

Some API resources may contain or reference sub-resources. Embedded sub-resources, which are
not top-level resources, are parts of a higher-level resource and cannot be used outside of its scope.
Sub-resources should be referenced by their name and identifier in the path segments.

Composite identifiers must not contain / as a separator. In order to improve the consumer
experience, you should aim for intuitively understandable URLs, where each sub-path is a valid
reference  to a resource or a set of  resources. For  example, if
/customers/12ev123bv12v/addresses/DE_100100101 is a valid path of your API, then
/customers/12ev123bv12v/addresses, /customers/12ev123bv12v and /customers must be valid as well in
principle.

14



Basic URL structure:

/{resources}/[resource-id]/{sub-resources}/[sub-resource-id]
/{resources}/[partial-id-1][separator][partial-id-2]

Examples:

/carts/1681e6b88ec1/1items
/carts/1681e6b88ec1/items/1
/customers/12ev123bv12v/addresses/DE_100100101

Should: Only Use UUIDs If Necessary

Generating IDs can be a scaling problem in high frequency and near real time use cases. UUIDs
solve this problem, as they can be generated without collisions in a distributed, non-coordinated
way and without additional server roundtrips.

However, they also come with some disadvantages:

* pure technical key without meaning; not ready for naming or name scope conventions that
might be helpful for pragmatic reasons, e.g. we learned to use names for product attributes,
instead of UUIDs

¢ less usable, because...

* cannot be memorized and easily communicated by humans
* harder to use in debugging and logging analysis

* less convenient for consumer facing usage

* quite long: readable representation requires 36 characters and comes with higher memory and
bandwidth consumption

* not ordered along their creation history and no indication of used id volume

* may be in conflict with additional backward compatibility support of legacy ids

UUIDs should be avoided were not needed for large scale id generation. Instead, for instance, server
side support with id generation can be preferred (POST on id resource, followed by idempotent PUT
on entity resource). Usage of UUIDs is especially discouraged as primary keys of master and
configuration data, like brand-ids or attribute-ids which have low id volume but widespread
steering functionality.

In any case, we should always use string rather than number type for identifiers. This gives us
more flexibility to evolve the identifier naming scheme. Accordingly, if used as identifiers, UUIDs
should not be qualified using a format property.

Hint: Usually, random UUID is used - see UUID version 4 in RFC 4122. Though UUID version 1 also
contains leading timestamps it is not reflected by its lexicographic sorting. This deficit is addressed
by ULID (Universally Unique Lexicographically Sortable Identifier). You may favour ULID instead of

15


https://tools.ietf.org/html/rfc4122
https://github.com/alizain/ulid

UUID, for instance, for pagination use cases ordered along creation time.

May: Consider Using (Non-) Nested URLs

If a sub-resource is only accessible via its parent resource and may not exists without parent
resource, consider using a nested URL structure, for instance:

/carts/1681e6b88ec1/cart-items/1

However, if the resource can be accessed directly via its unique id, then the API should expose it as
a top-level resource. For example, customer has a collection for sales orders; however, sales orders
have globally unique id and some services may choose to access the orders directly, for instance:

/customers/1681e6b88ec1
/sales-orders/5273gh3k525a

Should: Limit number of Resources

To keep maintenance and service evolution manageable, we should follow "functional
segmentation” and "separation of concern" design principles and do not mix different business
functionalities in same API definition. In this sense the number of resources exposed via API should
be limited - our experience is that a typical range of resources for a well-designed API is between 4
and 8. There may be exceptions with more complex business domains that require more resources,
but you should first check if you can split them into separate subdomains with distinct APIs.

Nevertheless one API should hold all necessary resources to model complete business processes
helping clients to understand these flows.

Should: Limit number of Sub-Resource Levels

There are main resources (with root url paths) and sub-resources (or “nested” resources with non-
root urls paths). Use sub-resources if their life cycle is (loosely) coupled to the main resource, i.e. the
main resource works as collection resource of the subresource entities. You should use < 3 sub-
resource (nesting) levels —more levels increase API complexity and url path length. (Remember,
some popular web browsers do not support URLs of more than 2000 characters)

9. HTTP

Must: Use HTTP Methods Correctly

Be compliant with the standardized HTTP method semantics summarized as follows:

16



GET
GET requests are used to read a single resource or query set of resources.

* GET requests for individual resources will usually generate a 404 if the resource does not exist

* GET requests for collection resources may return either 200 (if the listing is empty) or 404 (if the
list is missing)

* GET requests must NOT have request body payload

Note: GET requests on collection resources should provide a sufficient filter mechanism as well as
Pagination.

"GET with Body"

APIs sometimes face the problem, that they have to provide extensive structured request
information with GET, that may even conflicts with the size limits of clients, load-balancers, and
servers. As we require APIs to be standard conform (body in GET must be ignored on server side),
API designers have to check the following two options:

1. GET with URL encoded query parameters: when it is possible to encode the request information
in query parameters, respecting the usual size limits of clients, gateways, and servers, this
should be the first choice. The request information can either be provided distributed to
multiple query parameters or a single structured URL encoded string.

2. POST with body content: when a GET with URL encoded query parameters is not possible, a
POST with body content must be used. In this case the endpoint must be documented with the
hint GET with body to transport the GET semantic of this call.

Note: It is no option to encode the lengthy structured request information in header parameters.
From a conceptual point of view, the semantic of an operation should always be expressed by
resource name and query parameters, i.e. what goes into the URL. Request headers are reserved for
general context information, e.g. FlowIDs. In addition, size limits on query parameters and headers
are not reliable and depend on clients, gateways, server, and actual settings. Thus, switching to
headers does not solve the original problem.

PUT

PUT requests are used to create or update entire resources - single or collection resources. The
semantic is best described as »please put the enclosed representation at the resource mentioned by
the URL, replacing any existing resource.«.

* PUT requests are usually applied to single resources, and not to collection resources, as this
would imply replacing the entire collection

* PUT requests are usually robust against non-existence of resources by implicitly creating before
updating

 on successful PUT requests, the server will replace the entire resource addressed by the URL
with the representation passed in the payload (subsequent reads will deliver the same payload)

» successful PUT requests will usually generate 200 or 204 (if the resource was updated - with or

17



without actual content returned), and 201 (if the resource was created)

Note: Resource IDs with respect to PUT requests are maintained by the client and passed as a URL
path segment. Putting the same resource twice is required to be idempotent and to result in the
same single resource instance. If PUT is applied for creating a resource, only URIs should be
allowed as resource IDs. If URIs are not available POST should be preferred.

To prevent unnoticed concurrent updates when using PUT, the combination of ETag and If-(None-
)Match headers should be considered to signal the server stricter demands to expose conflicts and
prevent lost updates.

POST

POST requests are idiomatically used to create single resources on a collection resource endpoint,
but other semantics on single resources endpoint are equally possible. The semantic for collection
endpoints is best described as »please add the enclosed representation to the collection resource
identified by the URL«. The semantic for single resource endpoints is best described as »please
execute the given well specified request on the collection resource identified by the URL«.

* POST request should only be applied to collection resources, and normally not on single
resource, as this has an undefined semantic

» on successful POST requests, the server will create one or multiple new resources and provide
their URI/URLSs in the response

* successful POST requests will usually generate 200 (if resources have been updated), 201 (if
resources have been created), and 202 (if the request was accepted but has not been finished
yet)

More generally: POST should be used for scenarios that cannot be covered by the other methods
sufficiently. For instance, GET with complex (e.g. SQL like structured) query that needs to be passed
as request body payload because of the URL-length constraint. In such cases, make sure to
document the fact that POST is used as a workaround.

Note: Resource IDs with respect to POST requests are created and maintained by server and
returned with response payload. Posting the same resource twice is by itself not required to be
idempotent and may result in multiple resource instances. Anyhow, if external URIs are present
that can be used to identify duplicate requests, it is best practice to implement POST in an
idempotent way.

PATCH

PATCH request are only used for partial update of single resources, i.e. where only a specific subset
of resource fields should be replaced. The semantic is best described as »please change the resource
identified by the URL according to my change request«. The semantic of the change request is not
defined in the HTTP standard and must be described in the API specification by using suitable
media types.

* PATCH requests are usually applied to single resources, and not on collection resources, as this
would imply patching on the entire collection

18



PATCH requests are usually not robust against non-existence of resource instances

* on successful PATCH requests, the server will update parts of the resource addressed by the URL
as defined by the change request in the payload

* successful PATCH requests will usually generate 200 or 204 (if resources have been updated
* with or without updated content returned)
Note: since implementing PATCH correctly is a bit tricky, we strongly suggest to choose one and

only one of the following patterns per endpoint, unless forced by a backwards compatible change.
In preference order:

1. use PUT with complete objects to update a resource as long as feasible (i.e. do not use PATCH at
all).

2. use PATCH with partial objects to only update parts of a resource, when ever possible. (This is
basically JSON Merge Patch, a specialized media type application/merge-patch+json that is a
partial resource representation.)

3. use PATCH with JSON Patch, a specialized media type application/json-patch+json that includes
instructions on how to change the resource.

4. use POST (with a proper description of what is happening) instead of PATCH if the request does

not modify the resource in a way defined by the semantics of the media type.

In practice JSON Merge Patch quickly turns out to be too limited, especially when trying to update
single objects in large collections (as part of the resource). In this cases JSON Patch can shown its
full power while still showing readable patch requests (see also J[SON patch vs. merge).

To prevent unnoticed concurrent updates when using PATCH, the combination of ETag‘'and ‘If-
Match headers should be considered to signal the server stricter demands to expose conflicts and
prevent lost updates.

DELETE

DELETE request are used to delete resources. The semantic is best described as »please delete the
resource identified by the URL«.

* DELETE requests are usually applied to single resources, not on collection resources, as this
would imply deleting the entire collection

» successful DELETE request will usually generate 200 (if the deleted resource is returned) or 204
(if no content is returned)

« failed DELETE request will usually generate 404 (if the resource cannot be found) or 410 (if the
resource was already deleted before)

HEAD

HEAD requests are used retrieve to header information of single resources and resource
collections.

* HEAD has exactly the same semantics as GET, but returns headers only, no body.

19


https://tools.ietf.org/html/rfc7396
http://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7396
http://tools.ietf.org/html/rfc6902
http://erosb.github.io/post/json-patch-vs-merge-patch

OPTIONS
OPTIONS are used to inspect the available operations (HTTP methods) of a given endpoint.

* OPTIONS requests usually either return a comma separated list of methods (provided by an
Allow:-Header) or as a structured list of link templates

Note: OPTIONS is rarely implemented, though it could be used to self-describe the full functionality
of a resource.

Must: Fulfill Safeness and Idempotency Properties

An operation can be...

» idempotent, i.e. operation will produce the same results if executed once or multiple times
(note: this does not necessarily mean returning the same status code)

* safe, i.e. must not have side effects such as state changes

Method implementations must fulfill the following basic properties:

HTTP method safe idempotent
OPTIONS Yes Yes
HEAD Yes Yes
GET Yes Yes
PUT No Yes
POST No No
DELETE No Yes
PATCH No No

Must: Use Specific HTTP Status Codes

This guideline groups the following rules for HTTP status codes usage:
* You must not invent new HTTP status codes; only use standardized HTTP status codes and
consistent with its intended semantics.

* You should use the most specific HTTP status code for your concrete resource request
processing status or error situation.

* When using HTTP status codes that are less commonly used and not listed below, you must

provide good documentation in the API definition.

There are 60 different HTTP status codes with specific semantics defined in the HTTP standards
(mainly RFC7231 and RFC-6585) - and there are upcoming new ones, e.g. draft legally-restricted-
status (see overview on all error codes on Wikipedia or via https://httpstatuses.com/). And there are
unofficial ones, e.g. used by specific web servers like Nginx.

List of most commonly used and best understood HTTP status codes:

20


https://tools.ietf.org/html/rfc7231#section-6
https://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/draft-tbray-http-legally-restricted-status-05
https://tools.ietf.org/html/draft-tbray-http-legally-restricted-status-05
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://httpstatuses.com/

Success Codes

Code
200
201

202

204
207

Meaning

OK - this is the standard success response

Created - Returned on successful entity creation. You are free to
return either an empty response or the created resource in
conjunction with the Location header. (More details found in the
Common Headers.) Always set the Location header.

Accepted - The request was successful and will be processed

asynchronously.

No content - There is no response body

Multi-Status - The response body contains multiple status
informations for different parts of a batch/bulk request. See Must:
Provide Error Documentation.

Redirection Codes

Code
301

303

304

Client Side Error Codes

Code
400
401

403
404
405
406

408
409

410

Meaning

Moved Permanently - This and all future requests should be directed

to the given URIL.

See Other - The response to the request can be found under another
URI using a GET method.

Not Modified - resource has not been modified since the date or
version passed via request headers If-Modified-Since or If-None-

Match.

Meaning

Bad request - generic / unknown error

Unauthorized - the users must log in (this often means

“Unauthenticated”)

Forbidden - the user is not authorized to use this resource
Not found - the resource is not found
Method Not Allowed - the method is not supported, see OPTIONS

Not Acceptable - resource can only generate content not acceptable
according to the Accept headers sent in the request

Request timeout - the server times out waiting for the resource

Conflict - request cannot be completed due to conflict, e.g. when two
clients try to create the same resource or if there are concurrent,

conflicting updates

Gone - resource does not exist any longer, e.g. when accessing a
resource that has intentionally been deleted

Methods
All
POST, PUT

POST, PUT,
DELETE, PATCH

PUT, DELETE
POST

Methods
All

PATCH, POST, PUT,
DELETE

GET

Methods
All
All

All
All
All
All

All
PUT, DELETE,

PATCH

All

21



Code Meaning Methods

412 Precondition Failed - returned for conditional requests, e.g. If-Match PUT, DELETE,
if the condition failed. Used for optimistic locking. PATCH

415 Unsupported Media Type - e.g. clients sends request body without PUT, DELETE,
content type PATCH

423 Locked - Pessimistic locking, e.g. processing states PUT, DELETE,

PATCH

428 Precondition Required - server requires the request to be All
conditional (e.g. to make sure that the “lost update problem” is
avoided).

429 Too many requests - the client does not consider rate limiting and All
sent too many requests. See Must: Use 207 for Batch or Bulk
Requests.

Server Side Error Codes:

Code Meaning Methods

500 Internal Server Error - a generic error indication for an unexpected All
server execution problem (here, client retry may be senseful)

501 Not Implemented - server cannot fulfill the request (usually implies All
future availability, e.g. new feature).

503 Service Unavailable - server is (temporarily) not available (e.g. due  All
to overload) — client retry may be senseful.

Must: Provide Error Documentation

APIs should define the functional, business view and abstract from implementation aspects. Errors
become a key element providing context and visibility into how to use an API. The error object
should be extended by an application-specific error identifier if and only if the HTTP status code is
not specific enough to convey the domain-specific error semantic. For this reason, we use a
standardized error return object definition — see Must: Follow Hypertext Control Conventions.

The OpenAPI specification shall include definitions for error descriptions that will be returned;
they are part of the interface definition and provide important information for service clients to
handle exceptional situations and support troubleshooting.

Service providers should differentiate between technical and functional errors. In most cases it’s
not useful to document technical errors that are not in control of the service provider unless the
status code convey application-specific semantics. The list of status code that can be omitted from
API specifications includes but is not limited to:

« 401 Unauthorized
« 403 Forbidden

404 Not Found unless it has some additional semantics
o 405 Method Not Allowed

22



o 406 Not Acceptable

« 408 Request Timeout

« 413 Payload Too Large

« 414 URI Too Long

o 415 Unsupported Media Type
« 500 Internal Server Error
« 502 Bad Gateway

« 503 Service Unavailable

o 504 Gateway Timeout

Even though they might not be documented - they may very much occur in production, so clients
should be prepared for unexpected response codes, and in case of doubt handle them like they
would handle the corresponding x00 code. Adding new response codes (specially error responses)
should be considered a compatible API evolution.

Functional errors on the other hand, that convey domain-specific semantics, must be documented
and are strongly encouraged to be expressed with Must: Follow Hypertext Control Conventions.

Must: Use 207 for Batch or Bulk Requests

Some APIs are required to provide either batch or bulk requests using POST for performance
reasons, i.e. for communication and processing efficiency. In this case services may be in need to
signal multiple response codes for each part of an batch or bulk request. As HTTP does not provide
proper guidance for handling batch/bulk requests and responses, we herewith define the following
approach:

* A batch or bulk request always has to respond with HTTP status code 207, unless it encounters
a generic or unexpected failure before looking at individual parts.

* A batch or bulk response with status code 207 always returns a multi-status object containing
sufficient status and/or monitoring information for each part of the batch or bulk request.

* A batch or bulk request may result in a status code 400/500, only if the service encounters a
failure before looking at individual parts or, if an unanticipated failure occurs.

The before rules apply even in the case that processing of all individual part fail or each part is
executed asynchronously! They are intended to allow clients to act on batch and bulk responses by
inspecting the individual results in a consistent way.

Note: while a batch defines a collection of requests triggering independent processes, a bulk defines
a collection of independent resources created or updated together in one request. With respect to
response processing this distinction normally does not matter.

23



Must: Use 429 with Headers for Rate Limits

APIs that wish to manage the request rate of clients must use the '429 Too Many Requests' response
code if the client exceeded the request rate and therefore the request can’t be fulfilled. Such
responses must also contain header information providing further details to the client. There are
two approaches a service can take for header information:

* Return a 'Retry-After' header indicating how long the client ought to wait before making a
follow-up request. The Retry-After header can contain a HTTP date value to retry after or the
number of seconds to delay. Either is acceptable but APIs should prefer to use a delay in
seconds.

* Return a trio of 'X-RateLimit' headers. These headers (described below) allow a server to
express a service level in the form of a number of allowing requests within a given window of
time and when the window is reset.

The 'X-RateLimit' headers are:

* X-RateLimit-Limit: The maximum number of requests that the client is allowed to make in this
window.

» X-RateLimit-Remaining: The number of requests allowed in the current window.

e X-RatelLimit-Reset: The relative time in seconds when the rate limit window will be reset.

The reason to allow both approaches is that APIs can have different needs. Retry-After is often
sufficient for general load handling and request throttling scenarios and notably, does not strictly
require the concept of a calling entity such as a tenant or named account. In turn this allows
resource owners to minimise the amount of state they have to carry with respect to client requests.
The 'X-RateLimit' headers are suitable for scenarios where clients are associated with pre-existing
account or tenancy structures. 'X-RateLimit' headers are generally returned on every request and
not just on a 429, which implies the service implementing the API is carrying sufficient state to
track the number of requests made within a given window for each named entity.

Should: Explicitly define the Collection Format of
Query Parameters

There are different ways of supplying a set of values as a query parameter. One particular type
should be selected and stated explicitly in the API definition. The OpenAPI property
collectionFormat is used to specify the format of the query parameter.

Only the csv or multi formats should be used for multi-value query parameters as described below.

Collection  Description Example

Format

csv Comma separated 7parameter=valuel,value?,value3
values

multi Multiple parameter 7parameter=valuel&parameter=value2&parameter=value3
instances

24


http://tools.ietf.org/html/rfc6585
https://tools.ietf.org/html/rfc7231#section-7.1.3
http://swagger.io/specification/

When choosing the collection format, take into account the tool support, the escaping of special
characters and the maximal URL length.

10. Performance

Should: Reduce Bandwidth Needs and Improve
Responsiveness

APIs should support techniques for reducing bandwidth based on client needs. This holds for APIs
that (might) have high payloads and/or are used in high-traffic scenarios like the public Internet
and telecommunication networks. Typical examples are APIs used by mobile web app clients with
(often) less bandwidth connectivity. (Zalando is a 'Mobile First' company, so be mindful of this
point.)

Common techniques include:

* gZip compression

* querying field filters to retrieve a subset of resource attributes (see Should: Support Filtering of
Resource Fields below)

* paginate lists of data items (see Pagination below)

» ETag and If-(None-)Match headers to avoid re-fetching of unchanged resources (see May: Use the
Prefer header to indicate processing preferences

* pagination for incremental access of larger (result) lists

Each of these items is described in greater detail below.

Should: Use gzip Compression

Compress the payload of your APT’s responses with gzip, unless there’s a good reason not to — for
example, you are serving so many requests that the time to compress becomes a bottleneck. This
helps to transport data faster over the network (fewer bytes) and makes frontends respond faster.

Though gzip compression might be the default choice for server payload, the server should also
support payload without compression and its client control via Accept-Encoding request
header —see also RFC 7231 Section 5.3.4. The server should indicate used gzip compression via the
Content-Encoding header.

Should: Support Filtering of Resource Fields

Depending on your use case and payload size, you can significantly reduce network bandwidth
need by supporting filtering of returned entity fields. Here, the client can determine the subset of
fields he wants to receive via the fields query parameter — example see Google AppEngine API’s
partial response:

25


http://tools.ietf.org/html/rfc7231#section-5.3.4
https://cloud.google.com/appengine/docs/python/taskqueue/rest/performance#partial-response
https://cloud.google.com/appengine/docs/python/taskqueue/rest/performance#partial-response

Unfiltered

GET http://api.example.org/resources/123 HTTP/1.1

HTTP/1.1 200 0K
Content-Type: application/json

{
"id": "cddd5e44-dae0-11e5-8c01-63ed66ab2da5",
"name": "John Doe",
"address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
"birthday": "1984-09-13",
"partner": {
"id": "1fb43648-dae1-11e5-3a01-1fbc3abbl1cd0d",
"name": "Jane Doe",
"address": "1600 Pennsylvania Avenue Northwest, Washington, DC, United States",
"birthday": "1988-04-07"

Filtered

GET http://api.example.org/resources/1237?fields=(name,partner(name)) HTTP/1.1

HTTP/1.1 200 0K
Content-Type: application/json

{
"name": "John Doe",
"partner": {
"name": "Jane Doe"
}
}

As illustrated by this example, field filtering should be done via request parameter "fields" with
value range defined by the following BNF grammar.

26


https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

<fields> ::= <negation> <fields_expression> | <fields_expression>

<negation> ::=

<fields_expression> ::= "(" <field_set> ")"

<field_set> ::= <qualified_field> | <qualified_field> "," <field_set>
<qualified_field> ::= <field> | <field> <fields_expression>

<field> ::= <DASH_LETTER_DIGIT> | <DASH_LETTER_DIGIT> <field>
<DASH_LETTER_DIGIT> ::= <DASH> | <LETTER> | <DIGIT>

<DASH> ::= "-" | "_"
<LETTER> ::= "A"™ | "B" | "C" | "D" | "E" | "F" | "@" | "H" | "I" | "3" | "K" | "L" |
MO P RS T X | Y |

n a n | n b" | n C n | lld" | Ilell | llf" | Ilgll | llh" | n _i n | llj n | n kll | II'L" | Ilmll | lln" |

||0|I | Ilpll llqll | Ilrll | "S" | "t" | llull | Ilvll | ||W|I | IIXII | llyll | IIZII

<DIGIT> ::

ll@ll | I|1|| | ||2|| | "3" | ||4|| | "5" | ||6|| | "7" | ||8|| | "9"

A fields_expression as defined by the grammar describes the properties of an object, i.e. (name)
returns only the name property of the root object. (name, partner(name)) returns the name and partner
properties where partner itself is also an object and only its name property is returned.

Hint: OpenAPI doesn’t allow you to formally specify whether depending on a given parameter will
return different parts of the specified result schema. Explain this in English in the parameter
description.

Should: Allow Optional Embedding of Sub-Resources

Embedding related resources (also know as Resource expansion) is a great way to reduce the
number of requests. In cases where clients know upfront that they need some related resources
they can instruct the server to prefetch that data eagerly. Whether this is optimized on the server,
e.g. a database join, or done in a generic way, e.g. an HTTP proxy that transparently embeds
resources, is up to the implementation.

See Must: Avoid Trailing Slashes for naming, e.g. "embed" for steering of embedded resource
expansion. Please use the BNF grammar, as already defined above for filtering, when it comes to an
embedding query syntax.

Embedding a sub-resource can possibly look like this where an order resource has its order items
as sub-resource (/order/{orderId}/items):

27


https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

GET /order/123?embed=(items) HTTP/1.1

{
"id": "123",
" embedded": {
"items": [
{
"position": 1,
"sku": "1234-ABCD-7890",
"price": {
"amount": 71.99,
"currency": "EUR"
}
}
]
}
}

11. Pagination

Must: Support Pagination

Access to lists of data items must support pagination for best client side batch processing and
iteration experience. This holds true for all lists that are (potentially) larger than just a few hundred
entries.

There are two page iteration techniques:

* Offset/Limit-based pagination: numeric offset identifies the first page entry

» Cursor-based — aka key-based — pagination: a unique key element identifies the first page
entry (see also Facebook’s guide)

The technical conception of pagination should also consider user experience related issues. As
mentioned in this article, jumping to a specific page is far less used than navigation via
next/previous page links. This favours cursor-based over offset-based pagination.

Should: Prefer Cursor-Based Pagination, Avoid Offset-
Based Pagination

Cursor-based pagination is usually better and more efficient when compared to offset-based
pagination. Especially when it comes to high-data volumes and / or storage in NoSQL databases.

Before choosing cursor-based pagination, consider the following trade-offs:

* Usability/framework support:

o Offset / limit based pagination is more known than cursor-based pagination, so it has more

28


http://developer.infoconnect.com/paging-results-limit-and-offset
https://dev.twitter.com/overview/api/cursoring
https://developers.facebook.com/docs/graph-api/using-graph-api/v2.4#paging
https://www.smashingmagazine.com/2016/03/pagination-infinite-scrolling-load-more-buttons/

framework support and is easier to use for API clients
» Use case: Jump to a certain page

o If jumping to a particular page in a range (e.g., 51 of 100) is really a required use case,
cursor-based navigation is not feasible

Variability of data may lead to anomalies in result pages

o Offset-based pagination may create duplicates or lead to missing entries if rows are inserted
or deleted between two subsequent paging requests.

o When using cursor-based pagination, paging cannot continue when the cursor entry has
been deleted while fetching two pages

* Performance considerations - efficient server-side processing using offset-based pagination is
hardly feasible for:

- Higher data list volumes, especially if they do not reside in the database’s main memory
- Sharded or NoSQL databases
* Cursor-based navigation may not work if you need the total count of results and / or backward
iteration support

Further reading:

e Twitter
* Use the Index, Luke

* Paging in PostgreSQL

May: Use Pagination Links Where Applicable

* API implementing HATEOS may use simplified hypertext controls for pagination within
collections.

Those collections should then have an items attribute holding the items of the current page. The
collection may contain additional metadata about the collection or the current page (e.g. index,
page_size) when necessary.

You should avoid providing a total count in your API unless there’s a clear need to do so. Very often,
there are systems and performance implications to supporting full counts, especially as datasets
grow and requests become complex queries or filters that drive full scans (e.g., your database might
need to look at all candidate items to count them). While this is an implementation detail relative to
the AP, it’s important to consider your ability to support serving counts over the life of a service.

If the collection consists of links to other resources, the collection name should use IANA registered
link relations as names whenever appropriate, but use plural form.

E.g. a service for articles could represent the collection of hyperlinks to an article’s authors like that:

29


https://dev.twitter.com/rest/public/timelines
http://use-the-index-luke.com/no-offset
https://www.citusdata.com/blog/1872-joe-nelson/409-five-ways-paginate-postgres-basic-exotic
http://www.iana.org/assignments/link-relations/link-relations.xml
http://www.iana.org/assignments/link-relations/link-relations.xml

"self": "https://.../articles/xyz/authors/",

"index": 0,
"page_size": 5,
"items": [

{

“"href": "https://...",
"id": "123e4567-e89b-12d3-a456-426655440000",
"name": "Kent Beck"

}

{
“href": "https://...",
"id": "987e2343-e89b-12d3-a456-426655440000",
"name": "Mike Beedle"

b

],

“first": "https://...",
"next": "https://...",
"prev": "https://...",
"last": "https://..."

12. Hypermedia

Must: Use REST Maturity Level 2

We strive for a good implementation of REST Maturity Level 2 as it enables us to build resource-
oriented APIs that make full use of HTTP verbs and status codes. You can see this expressed by
many rules throughout these guidelines, e.g.:

* May: Use Conventional Query Strings

* Should: Define useful resources

* Should: Limit number of Sub-Resource Levels

* Must: Fulfill Safeness and Idempotency Properties

Although this is not HATEOAS, it should not prevent you from designing proper link relationships
in your APISs as stated in rules below.

May: Use REST Maturity Level 3 - HATEOAS

We do not generally recommend to implement REST Maturity Level 3. HATEOAS comes with
additional API complexity without real value in our SOA context where client and server interact
via REST APIs and provide complex business functions as part of our e-commerce SaaS platform.

Our major concerns regarding the promised advantages of HATEOAS (see also RESTistential Crisis

30


http://martinfowler.com/articles/richardsonMaturityModel.html#level2
http://martinfowler.com/articles/richardsonMaturityModel.html#level3
https://www.infoq.com/news/2014/03/rest-at-odds-with-web-apis%20for%20detailed%20discussion

over Hypermedia APIs, Why I Hate HATEOAS and others): * We follow the API First principle with
APIs explicitly defined outside the code with standard specification language. HATEOAS does not
really add value for SOA client engineers in terms of API self-descriptiveness: a client engineer
finds necessary links and usage description (depending on resource state) in the API reference
definition anyway. * Generic HATEOAS clients which need no prior knowledge about APIs and
explore API capabilities based on hypermedia information provided, is a theoretical concept that
we haven’t seen working in practise and does not fit to our SOA set-up. The OpenAPI description
format (and tooling based on OpenAPI) doesn’t provide sufficient support for HATEOAS either. * In
practice relevant HATEOAS approximations (e.g. following specifications like HAL or JSON API)
support API navigation by abstracting from URL endpoint and HTTP method aspects via link types.
So, Hypermedia does not prevent clients from required manual changes when domain model
changes over time. * Hypermedia make sense for humans, less for SOA machine clients. We would
expect use cases where it may provide value more likely in the frontend and human facing service
domain. * Hypermedia does not prevent API clients to implement shortcuts and directly target
resources without 'discovering' them.

However, we do not forbid HATEOAS; you could use it, if you checked its limitations and still see
clear value for your usage scenario that justifies its additional complexity. If you use HATEOAS
please share experience and present your findings in the API Guild [internal link].

Must: Use Common Hypertext Controls

When embedding links to other resources into representations you must use the common hypertext
control object. It contains at least one attribute:

* href: The URI of the resource the hypertext control is linking to. All our API are using HTTP(s) as
URI scheme.

In API that contain any hypertext controls, the attribute name href is reserved for usage within
hypertext controls.

The schema for hypertext controls can be derived from this model:

HttpLink:
description: A base type of objects representing links to resources.
type: object
properties:
href:
description: Any URI that is using http or https protocol
type: string
format: uri
required: [ "href" ]

The name of an attribute holding such a HttpLink object specifies the relation between the object
that contains the link and the linked resource. Implementations should use names from the IANA
Link Relation Registry whenever appropriate. As IANA link relation names use hyphen-case
notation, while this guide enforces snake_case notation for attribute names, hyphens in IANA
names have to be replaced with underscores (e.g. the IANA link relation type version-history would

31


https://www.infoq.com/news/2014/03/rest-at-odds-with-web-apis%20for%20detailed%20discussion
https://jeffknupp.com/blog/2014/06/03/why-i-hate-hateoas/
https://techwiki.zalando.net/display/GUL/API+Guild
http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml

become the attribute version_history)

Specific link objects may extend the basic link type with additional attributes, to give additional
information related to the linked resource or the relationship between the source resource and the
linked one.

E.g. a service providing "Person" resources could model a person who is married with some other
person with a hypertext control that contains attributes which describe the other person (id, name)
but also the relationship "spouse" between between the two persons (since):

{
"id": "446f9876-e89b-12d3-a456-426655440000",
"name": "Peter Mustermann",
"spouse": {
"href": "https://...",
"since": "1996-12-19",
"id": "123e4567-e89b-12d3-3456-426655440000",
"name": "Linda Mustermann"
}
+

Hypertext controls are allowed anywhere within a JSON model. While this specification would
allow HAL, we actually don’t recommend/enforce the usage of HAL anymore as the structural
separation of meta-data and data creates more harm than value to the understandability and
usability of an API.

Should: Use Simple Hypertext Controls for Pagination
and Self-References

Hypertext controls for pagination inside collections and self-references should use a simple URI
value in combination with their corresponding link relations (next, prev, first, last, self) instead of
the extensible common hypertext control

See Pagination for information how to best represent paginateable collections.

Must: Not Use Link Headers with JSON entities

We don’t allow the use of the Link Header defined by RFC 5988 in conjunction with JSON media
types. We prefer links directly embedded in JSON payloads to the uncommon link header syntax.

13. Data Formats

32


http://stateless.co/hal_specification.html
http://www.iana.org/assignments/link-relations/link-relations.xml
http://tools.ietf.org/html/rfc5988#section-5
http://tools.ietf.org/html/rfc5988#section-5

Must: Use JSON to Encode Structured Data

Use JSON-encoded body payload for transferring structured data. The JSON payload must follow
RFC-7159 by having (if possible) a serialized object as the top-level structure, since it would allow
for future extension. This also applies for collection resources where one naturally would assume
an array. See Should: Prefer Cursor-Based Pagination, Avoid Offset-Based Pagination for an
example.

May: Use non JSON Media Types for Binary Data or
Alternative Content Representations
Other media types may be used in following cases:

» Transferring binary data or data whose structure is not relevant. This is the case if payload
structure is not interpreted and consumed by clients as is. Example of such use case is
downloading images in formats JPG, PNG, GIF.

* In addition to JSON version alternative data representations (e.g. in formats PDF, DOC, XML)
may be made available through content negotiation.

Must: Use Standard Date and Time Formats

JSON Payload

Read more about date and time format in Should: Enumerations should be represented as Strings.

HTTP headers

Http headers including the proprietary headers use the HTTP date format defined in RFC 7231.

May: Use Standards for Country, Language and
Currency Codes

Use the following standard formats for country, language and currency codes:

» ISO 3166-1-alpha2 country codes

o (Itis “GB”, not “UK”, even though “UK” has seen some use at Zalando)
* ISO 639-1 language code

o BCP-47 (based on ISO 639-1) for language variants

» ISO 4217 currency codes

33


https://tools.ietf.org/html/rfc7159
http://tools.ietf.org/html/rfc7231#section-7.1.1.1
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://tools.ietf.org/html/bcp47
https://en.wikipedia.org/wiki/ISO_4217

Must: Define Format for Type Number and Integer

Whenever an API defines a property of type number or integer, the precision must be defined by the
format as follows to prevent clients from guessing the precision incorrectly, and thereby changing
the value unintentionally:

type format specified value range

integer int32 integer between -2*' and 2*'-1

integer int64 integer between -2% and 2%-1

integer bigint arbitrarily large signed integer number

number float IEEE 754-2008/ISO 60559:2011 binary64 decimal number
number double IEEE 754-2008/ISO 60559:2011 binary128 decimal number
number decimal arbitrarily precise signed decimal number

The precision must be translated by clients and servers into the most specific language types. E.g.
for the following definitions the most specific language types in Java will translate to BigDecimal for
Money.amount and int or Integer for the OrderList.page_size:

Money:
type: object
properties:
amount:

type: number
description: Amount expressed as a decimal number of major currency units
format: decimal
example: 99.95

OrderList:
type: object
properties:
page_size:

type: integer
description: Number of orders in list
format: int32
example: 42

Should: Prefer standard Media type name
application/json

Previously, this guideline allowed the wuse of custom media types like
application/x.zalando.article+json. This usage is not recommended anymore and should be
avoided, except where it is necessary for cases of media type versioning. Instead, the standard
media type name application/json (or Must: Follow Hypertext Control Conventions).

Custom media types with subtypes beginning with x bring no advantage compared to the standard

34



media type for JSON, and make automated processing more difficult. They are also discouraged by
RFC 6838.

14. Common Data Types

Definitions of data objects that are good candidates for wider usage:

Should: Use a Common Money Object

Use the following common money structure:

Money:
type: object
properties:
amount:
type: number
description: Amount expressed as a decimal number of major currency units
format: decimal
example: 99.95
currency:
type: string
description: 3 letter currency code as defined by IS0-4217
format: iso-4217
example: EUR
required:
- amount
- currency

The decimal values for "amount" describe unit and subunit of the currency in a single value, where
the digits before the decimal point are for the major unit and the digits after the decimal point are
for the minor unit. Note that some business cases (e.g. transactions in Bitcoin) call for a higher
precision, so applications must be prepared to accept values with unlimited precision, unless
explicitly stated otherwise in the API specification. Examples for correct representations (in EUR):

e 4).200r 42.2 =42 Euros, 20 Cent

0.23 =23 Cent

47.0 or 42 = 42 Euros

1024.42 = 1024 Euros, 42 Cent

1024.4225 = 1024 Euros, 42.25 Cent

Make sure that you don’t convert the “amount” field to float / double types when implementing this
interface in a specific language or when doing calculations. Otherwise, you might lose precision.
Instead, use exact formats like Java’s BigDecimal. See Stack Overflow for more info.

Some JSON parsers (Node]S’s, for example) convert numbers to floats by default. After discussing
the pros and cons (internal link), we’ve decided on "decimal" as our amount format. It is not a

35


https://tools.ietf.org/html/rfc6838#section-3.4
https://tools.ietf.org/html/rfc6838#section-3.4
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
http://stackoverflow.com/a/3730040/342852
https://docs.google.com/spreadsheets/d/12wTj-2w39f69XZGwRDrosNc1yWPwQpGgEs_DCt5ODaQ

standard OpenAPI format, but should help us to avoid parsing numbers as float / doubles.

Must: Use common field names and semantics

There exist a variety of field types that are required in multiple places. To achieve consistency
across all API implementations, you must use common field names and semantics whenever
applicable.

Generic Fields

There are some data fields that come up again and again in API data:

id: the identity of the object. If used, IDs must opaque strings and not numbers. IDs are unique
within some documented context, are stable and don’t change for a given object once assigned,
and are never recycled cross entities.

xyz_id: an attribute within one object holding the identifier of another object must use a name
that corresponds to the type of the referenced object or the relationship to the referenced object
followed by _id (e.g. customer_id not customer_number; parent_node_id for the reference to a
parent node from a child node, even if both have the type Node)

created: when the object was created. If used, this must be a date-time construct.
modified: when the object was updated. If used, this must be a date-time construct.

type: the kind of thing this object is. If used, the type of this field should be a string. Types allow
runtime information on the entity provided that otherwise requires examining the Open API
file.

Example JSON schema:

36



tree_node:
type: object
properties:
id:
description: the identifier of this node
type: string
created:
description: when got this node created
type: string
format: 'date-time'
modified:
description: when got this node last updated
type: string
format: 'date-time'
type:
type: string
enum: [ 'LEAF', 'NODE' ]
parent_node_id:
description: the identifier of the parent node of this node
type: string
example:
id: '123435'
created: '2017-04-12T723:20:50.527'
modified: '2017-04-12723:20:50.527"
type: 'LEAF'
parent_node_id: '534321'

These properties are not always strictly necessary, but making them idiomatic allows API client
developers to build up a common understanding of Zalando’s resources. There is very little utility
for API consumers in having different names or value types for these fields across APIs.

Address Fields

Address structures play a role in different functional and use-case contexts, including country
variances. All attributes that relate to address information should follow the naming and semantics
defined below.

addressee:

description: a (natural or legal) person that gets addressed
type: object
required:

- first_name

- last_name

- street

- city

- zip

- country_code
properties:

salutation:

37



38

description: |
a salutation and/or title used for personal contacts to some
addressee; not to be confused with the gender information!
type: string
example: Mr
first_name:
description: |
given name(s) or first name(s) of a person; may also include the
middle names.
type: string
example: Hans Dieter
last_name:
description: |
family name(s) or surname(s) of a person
type: string
example: Mustermann
business_name:
description: |
company name of the business organization. Used when a business is
the actual addressee; for personal shipments to office addresses, use
‘care_of' instead.
type: string
example: Consulting Services GmbH
required:
- first_name
- last_name

address:
description:
an address of a location/destination
type: object
properties:
care_of:
description: |
(aka c/0) the person that resides at the address, if different from
addressee. E.g. used when sending a personal parcel to the
office /someone else's home where the addressee resides temporarily
type: string
example: Consulting Services GmbH
street:
description: |
the full street address including house number and street name
type: string
example: Schonhauser Allee 103
additional:
description: |
further details like building name, suite, apartment number, etc.
type: string
example: 2. Hinterhof rechts
city:
description: |



name of the city / locality
type: string
example: Berlin
zip:
description: |
zip code or postal code
type: string
example: 14265
country_code:
description: |
the country code according to
[1s0-3166-1-alpha-2](https://en.wikipedia.org/wiki/IS0_3166-1_alpha-2)
type: string
example: DE
required:
- Street
- city
- zip
- country_code

Grouping and cardinality of fields in specific data types may vary based on the specific use case
(e.g. combining addressee and address fields into a single type when modeling an address label vs
distinct addressee and address types when modeling users and their addresses).

Must: Follow Hypertext Control Conventions

APIs that provide hypertext controls (links) to interconnect API resources must follow the
conventions for naming and modeling of hypertext controls as defined in section Hypermedia.

Must: Use Problem JSON

RFC 7807 defines the media type application/problem+json. Operations should return that (together
with a suitable status code) when any problem occurred during processing and you can give more
details than the status code itself can supply, whether it be caused by the client or the server (i.e.
both for 4xx or 5xx errors).

A previous version of this guideline (before the publication of that RFC and the registration of the
media type) told to return application/x.problem+json in these cases (with the same contents).
Servers for APIs defined before this change should pay attention to the Accept header sent by the
client and set the Content-Type header of the problem response correspondingly. Clients of such
APIs should accept both media types.

APIs may define custom problems types with extension properties, according to their specific
needs.

The Open API schema definition can be found on github. You can reference it by using:

39


http://tools.ietf.org/html/rfc7807
https://zalando.github.io/problem/schema.yaml

responses:
503:
description: Service Unavailable
schema:
$ref: "https://zalando.github.io/problem/schema.yaml#/Problem’

Must: Do not expose Stack Traces

Stack traces contain implementation details that are not part of an API, and on which clients should
never rely. Moreover, stack traces can leak sensitive information that partners and third parties are
not allowed to receive and may disclose insights about vulnerabilities to attackers.

15. Common Headers

This section describes a handful of headers, which we found raised the most questions in our daily
usage, or which are useful in particular circumstances but not widely known.

Must: Use Content Headers Correctly

Content or entity headers are headers with a Content- prefix. They describe the content of the body
of the message and they can be used in both, HTTP requests and responses. Commonly used content
headers include but are not limited to:

* Content-Disposition can indicate that the representation is supposed to be saved as a file, and
the proposed file name.

» Content-Encoding indicates compression or encryption algorithms applied to the content.

» Content-Length indicates the length of the content (in bytes).

* Content-Lanquage indicates that the body is meant for people literate in some human
language(s).

* Content-Location indicates where the body can be found otherwise (Must: Use Content Headers
Correctly for more details]).

* Content-Range is used in responses to range requests to indicate which part of the requested
resource representation is delivered with the body.

» Content-Type indicates the media type of the body content.

May: Use Content-Location Header

The Content-Location header is optional and can be used in successful write operations (PUT, POST
or PATCH) or read operations (GET, HEAD) to guide caching and signal a receiver the actual location
of the resource transmitted in the response body. This allows clients to identify the resource and to
update their local copy when receiving a response with this header.

The Content-Location header can be used to support the following use cases:

40


https://tools.ietf.org/html/rfc6266
https://tools.ietf.org/html/rfc7231#section-3.1.2.2
https://tools.ietf.org/html/rfc7230#section-3.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7233#section-4.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

* For reading operations GET and HEAD, a different location than the requested URI can be used
to indicate that the returned resource is subject to content negotiations, and that the value
provides a more specific identifier of the resource.

» For writing operations PUT and PATCH, an identical location to the requested URI, can be used
to explicitly indicate that the returned resource is the current representation of the newly
created or updated resource.

* For writing operations POST and DELETE, a content location can be used to indicate that the
body contains a status report resource in response to the requested action, which is available at
provided location.

Note: When using the Content-Location header, the Content-Type header has to be set as well. For
example:

GET /products/123/images HTTP/1.1

HTTP/1.1 200 0K
Content-Type: image/png
Content-Location: /products/123/images?format=raw

Should: Use Location Header instead of Content-
Location Header

As the correct usage of Content-Location with respect to semantics and caching is difficult, we
discourage the use of Content-Location. In most cases it is sufficient to direct clients to the resource
location by using the Location header instead without hitting the Content-Location specific
ambiguities and complexities.

More details in RFC 7231 7.1.2 Location, 3.1.4.2 Content-Location

May: Use the Prefer header to indicate processing
preferences

The Prefer header defined in RFC7240 allows clients to request processing behaviors from servers.
RFC7240 pre-defines a number of preferences and is extensible, to allow others to be defined.
Support for the Prefer header is entirely optional and at the discretion of API designers, but as an
existing Internet Standard, is recommended over defining proprietary "X-" headers for processing
directives.

The Prefer header can defined like this in an API definition:

41


https://tools.ietf.org/html/rfc7231#section-7.1.2
https://tools.ietf.org/html/rfc7231#section-3.1.4.2
https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7240

Prefer:
name: Prefer
description: |
The RFC7240 Prefer header indicates that particular server
behaviors are preferred by the client but are not required
for successful completion of the request.
# (indicate the preferences supported by the API)

in: header
type: string
required: false

Supporting APIs may return the Preference-Applied header also defined in RFC7240 to indicate
whether the preference was applied.

May: Consider using ETag together with If-(None-
)Match header

When creating or updating resources it may be necessary to expose conflicts and to prevent the lost
update problem. This can be best accomplished by using the ETag header together with the If-Match
and If-None-Match. The contents of an ETag: <entity-tag> header is either (a) a hash of the response
body, (b) a hash of the last modified field of the entity, or (c) a version number or identifier of the
entity version.

To expose conflicts between concurrent update operations via PUT, POST, or PATCH, the If-Match:
<entity-tag> header can be used to force the server to check whether the version of the updated
entity is conforming to the requested <entity-tag>. If no matching entity is found, the operation is
supposed a to respond with status code 412 - precondition failed.

Beside other use cases, the If-None-Match: header with parameter * can be used in a similar way to
expose conflicts in resource creation. If any matching entity is found, the operation is supposed a to
respond with status code 412 - precondition failed.

The ETag, If-Match, and If-None-Match headers can be defined as follows in the API definition:

42


https://tools.ietf.org/html/rfc7240
https://tools.ietf.org/html/rfc7232#section-2.3
https://tools.ietf.org/html/rfc7232#section-3.1
https://tools.ietf.org/html/rfc7232#section-3.2

Etag:

name: Etag

description: |
The RFC7232 ETag header field in a response provides the current entity-
tag for the selected resource. An entity-tag is an opaque identifier for
different versionsof a resource over time, regardless whether multiple
versions are valid at the same time. An entity-tag consists of an opaque
quoted string, possibly prefixed by a weakness indicator.

in: header

type: string

required: false

example: W/"xy", "5", "7da7a728-f910-11e6-9423-68f728c1ba70"

IfMatch:

name: If-Match

description: |
The RFC7232 If-Match header field in a request requires the server to
only operate on the resource that matches at least one of the provided
entity-tags. This allows clients express a precondition that prevent
the method from being applied, if there have been any changes to the
resource.

in: header

type: string

required: false

example: "5", "7da7a728-f910-11e6-942a-68f728c1ba70"

IfNoneMatch:
name: If-None-Match
description: |
The RFC7232 If-None-Match header field in a request requires the server
to only operate on the resource if it does not match any of the provided
entity-tags. If the provided entity-tag is ‘*', it is required that the
resource does not exist at all.

in: header

type: string

required: false

example: "7da7a728-f910-11e6-942a3-68f728c1ba70", *

16. Proprietary Headers

This section shares definitions of proprietary headers that should be named consistently because
they address overarching service-related concerns. Whether services support these concerns or not
is optional; therefore, the OpenAPI API specification is the right place to make this explicitly visible.
Use the parameter definitions of the resource HTTP methods.

43



Must: Use Only the Specified Proprietary Zalando
Headers

As a general rule, proprietary HTTP headers should be avoided. Still they can be useful in cases
where context needs to be passed through multiple services in an end-to-end fashion. As such, a
valid use-case for a proprietary header is providing context information, which is not a part of the
actual AP, but is needed by subsequent communication.

From a conceptual point of view, the semantics and intent of an operation should always be
expressed by URLs path and query parameters, the method, and the content. Headers are more
often used to implement functions close to the protocol considerations, such as flow control,
content negotiation, and authentication. Thus, headers are reserved for general context
information (RFC-7231).

X- headers were initially reserved for unstandardized parameters, but the usage of X- headers is
deprecated (RFC-6648). This complicates the contract definition between consumer and producer of
an API following these guidelines, since there is no aligned way of using those headers. Because of
this, the guidelines restrict which X- headers can be used and how they are used.

The Internet Engineering Task Force’s states in RFC-6648 that company specific header' names
should incorporate the organization’s name. We aim for backward compatibility, and therefore
keep the X- prefix.

The following proprietary headers have been specified by this guideline for usage so far.
Remember that HTTP header field names are not case-sensitive.

Header field Type Description Header field
name value
example

X-Flow-ID String  The flow id of the request, which is written into the logs GKY70DhpSi
and passed to called services. Helpful for operational KY_gAAAABZ
troubleshooting and log analysis. It supports traceability of _A
requests and identifying request flows through system of
many services. It should be a string consisting of just
printable ASCII characters (i.e. without whitespace). Verify
in a received request that it fits to a specific format, has a
sensible maximum length and possibly throw out or
escape characters/bytes which could crash your log
parsing (line breaks, tabs, spaces, NULL). If a legacy
subsystem can only work with flow IDs of a specific
format, it needs to define this in its API, or make its own
ones.

X-Tenant-ID  String  The tenant id for future platform multitenancy support. 9f8b3ca3-

Should not be used unless new platform multitenancy is 4be5-436¢-
truly supported. But should be used by New Platform a847-
Prototyping services. Must be validated for external 9cd55460c495

retailer, supplier, etc. tenant users via OAuth2; details in
clarification. Currently only used by New Platform
Prototyping services.

44


https://tools.ietf.org/html/rfc7231#section-5
https://tools.ietf.org/html/rfc6648
https://tools.ietf.org/html/rfc6648

Header field Type Description Header field

name value

example
X-Sales- String  Sales channels are owned by retailers and represent a 101
Channel specific consumer segment being addressed with a specific

product assortment that is offered via CFA retailer catalogs
to consumers (see platform glossary [internal link])

X-Frontend- String  Consumer facing applications (CFAs) provide business mobile-app
Type experience to their customers via different frontend

application types, for instance, mobile app or browser.

Info should be passed-through as generic aspect — there

are diverse concerns, e.g. pushing mobiles with specific

coupons, that make use of it. Current range is mobile-app,

browser, facebook-app, chat-app

X-Device- String  There are also use cases for steering customer experience tablet
Type (incl. features and content) depending on device type. Via

this header info should be passed-through as generic

aspect. Current range is smartphone, tablet, desktop, other

X-Device-OS String  On top of device type above, we even want to differ Android
between device platform, e.g. smartphone Android vs. iOS.
Via this header info should be passed-through as generic
aspect. Current range is iOS, Android, Windows, Linux,

MacOS
X-App- Integer The app domain (i.e. shop channel context) of the request. 16
Domain Note, app-domain is a legacy concept that will be replaced

in new platform by combinations of main CFA concerns
like retailer, sales channel, country

Exception: The only exception to this guideline are the conventional hop-by-hop X-RatelLimit-
headers which can be used as defined in Must: Use 207 for Batch or Bulk Requests.

Must: Propagate Proprietary Headers

All Zalando’s proprietary headers are end-to-end headers. [2: HTTP/1.1 standard (RFC-7230) defines
two types of headers: end-to-end and hop-by-hop headers. End-to-end headers must be transmitted
to the ultimate recipient of a request or response. Hop-by-hop headers, on the contrary, are
meaningful for a single connection only.]

All headers specified above must be propagated to the services down the call chain. The header
names and values must remain unchanged.

For example, the values of the custom headers like X-Device-Type can affect the results of queries by
using device type information to influence recommendation results. Besides, the values of the
custom headers can influence the results of the queries (e.g. the device type information influences
the recommendation results).

Sometimes the value of a proprietary header will be used as part of the entity in a subsequent
request. In such cases, the proprietary headers must still be propagated as headers with the
subsequent request, despite the duplication of information.

45


https://pages.github.bus.zalan.do/core-platform/docs/glossary/glossary.html
https://tools.ietf.org/html/rfc7230#section-6.1

17. Deprecation

Sometimes it is necessary to phase out an API endpoint (or version), for instance, if a field is no
longer supported in the result or a whole business functionality behind an endpoint has to be shut
down. There are many other reasons as well. As long as these endpoints are still used by consumers
these are breaking changes and not allowed. Deprecation rules have to be applied to make sure that
necessary consumer changes are aligned and deprecated endpoints are not used before API
changes are deployed.

Must: Obtain Approval of Clients

Before shutting down an API (or version of an API) the producer must make sure, that all clients
have given their consent to shut down the endpoint. Producers should help consumers to migrate to
a potential new endpoint (i.e. by providing a migration manual). After all clients are migrated, the
producer may shut down the deprecated APIL

Must: External Partners Must Agree on Deprecation
Timespan

If the API is consumed by any external partner, the producer must define a reasonable timespan
that the API will be maintained after the producer has announced deprecation. The external
partner (client) must agree to this minimum after-deprecation-lifespan before he starts using the
APIL.

Must: Reflect Deprecation in API Definition

API deprecation must be part of the OpenAPI definition. If a method on a path, a whole path or
even a whole API endpoint (multiple paths) should be deprecated, the producers must set
deprecated=true on each method / path element that will be deprecated (OpenAPI 2.0 only allows
you to define deprecation on this level). If deprecation should happen on a more fine grained level
(i.e. query parameter, payload etc.), the producer should set deprecated=true on the affected method
/ path element and add further explanation to the description section.

If deprecated is set to true, the producer must describe what clients should use instead and when
the API will be shut down in the description section of the API definition.

Must: Monitor Usage of Deprecated APIs

Owners of APIs used in production must monitor usage of deprecated APIs until the API can be shut
down in order to align deprecation and avoid uncontrolled breaking effects. See also the Must:
Provide Online Access to OpenAPI Reference Definition.

46



Should: Add a Warning Header to Responses

During deprecation phase, the producer should add a Warning header (see RFC 7234 - Warning
header) field. When adding the Warning header, the warn-code must be 299 and the warn-text should
be in form of "The path/operation/parameter/... {name} is deprecated and will be removed by {date}.
Please see {link} for details.” with a link to a documentation describing why the API is no longer
supported in the current form and what clients should do about it. Adding the Warning header is not
sufficient to gain client consent to shut down an API.

Should: Add Monitoring for Warning Header

Clients should monitor the Warning header in HTTP responses to see if an API will be deprecated in
future.

Must: Not Start Using Deprecated APIs

Clients must not start using deprecated parts of an APL

18. API Operation

Must: Provide Online Access to OpenAPI Reference
Definition

All service applications must support access to the OpenAPI Reference Definitions of their external
APIs — it is optional for internal APIs — via the following two API endpoints:

* endpoint(s) for GET access on its OpenAPI definition(s), for instance https://example.com/
swagger.json or https://example.com/swagger.yaml.

* API Discovery endpoint https://example.com/.well-known/schema-discovery that delivers a JSON
discovery document of the following form (adapt the schema_url to point to the endpoint
mentioned above):

{
"schema_url": "/swagger.json",
"schema_type": "swagger-2.0",
|lu_i_ur‘|-ll: Il/u_i/ll

}

* whether these endpoints have to be secured by OAuth depends on context of your API and
product management

* if you secure these endpoint, only use uid scope

Hint: Though discovery endpoints have to be supported, they should not be specified in the
OpenAPI definition as they are generic and provide no API specific information.

47


https://tools.ietf.org/html/rfc7234#section-5.5
https://tools.ietf.org/html/rfc7234#section-5.5
https://example.com/swagger.json
https://example.com/swagger.json
https://example.com/swagger.json
https://example.com/swagger.yaml
https://example.com/swagger.yaml
https://example.com/swagger.yaml
https://example.com/.well-known/schema-discovery
https://example.com/.well-known/schema-discovery
https://example.com/.well-known/schema-discovery
https://example.com/.well-known/schema-discovery
https://example.com/.well-known/schema-discovery

We distinguish between internal and external APIs of an application which is owned by a specific
team and often implemented via small set of services. An external API is used by clients outside the
team - usually another application owned by a different team or even an external business partner
user of our platform. An internal API is only used within the application and only by the owning
team, for instance, for operational or implementation internal purposes.

Background: In our dynamic and complex service infrastructure, it is important to provide API
client developers a central place with online access to the OpenAPI reference definitions of all
running applications. As a part of the Zalando infrastructure, the .well-known/schema-discovery
endpoint is used by the API Discovery to detect all API definitions. It checks all running applications
via the endpoint above and stores the discovered API definitions. API Discovery itself provides a
RESTful API as well as an API Viewer (Swagger-UI) for central access to all discovered API
definitions.

Editorial: For the time being, this document is an appropriate place to mention this rule, even
though it is not a RESTful API definition rule but related to service implementation obligations to
support client developer API discovery.

Further reading:

» Library to make your Spring Boot service crawlable via API Discovery

Should: Monitor API Usage

Owners of APIs used in production should monitor API service to get information about its using
clients. This information, for instance, is useful to identify potential review partner for API changes.

Hint: A preferred way of client detection implementation is by logging of the client-id retrieved
from the OAuth token.

19. Events

Zalando’s architecture centers around decoupled microservices and in that context we favour
asynchronous event driven approaches. The guidelines in this section focus on how to design and
publish events intended to be shared for others to consume.

Events, Event Types and Categories.

Events are defined using an item called an Event Type. The Event Type allows events to have their
structure declared with a schema by producers and understood by consumers. An Event Type
declares standard information, such as a name, an owning application (and by implication, an
owning team), a schema defining the event’s custom data, and a compatibility mode declaring how
the schema will be evolved. Event Types also allow the declaration of validation and enrichment
strategies for events, along with supplemental information such as how events can be partitioned
in an event stream.

Event Types belong to a well known Event Category (such as a data change category), which
provides extra information that is common to that kind of event.

48


https://github.com/zalando-stups/twintip-spring-web

Event Types can be published and made available as API resources for teams to use, typically in an
Event Type Registry. Each event published can then be validated against the overall structure of its
event type and the schema for its custom data.

The basic model described above was originally developed in the Nakadi project, which acts as a
reference implementation of the event type registry, and as a validating publish/subscribe broker
for event producers and consumers.

Must: Treat Events as part of the service interface

Events are part of a service’s interface to the outside world equivalent in standing to a service’s
REST APIL Services publishing data for integration must treat their events as a first class design
concern, just as they would an API. For example this means approaching events with the "API first"
principle in mind as described in the [introduction].

Must: Make Events available for review

Services publishing event data for use by others must make the event schema available for review.

Must: Ensure Event Type schemas conform to Open
APTI’s Schema Object

Event type schema are defined in accordance with the Open API Schema Object specification,
which uses a subset of J[SON Schema Draft 4, and also adds other features. This allows events to
properly align with API resource representations (it’s particulary useful for events that represent
data changes about resources). The guideline exists since declaring event type schema using JSON-
Schema syntax is common practice (because Open API doesn’t yet allow standalone object
definitions).

In the rest of this section we’ll call out some of the more notable differences between Open API and
JSON-Schema. Please note this is not a complete list - in general it’s recommended to familiarise
yourself with Open API’'s Schema Object (the details are available from the "Schema Object" section
of that specification).

Open API removes some JSON-Schema keywords. These must not be used in event type schemas.
The list of Open API object keywords can be seen here, but for convenience the list of non-available
keywords relative to JSON-Schema are:

o additionalltems

« contains

« patternProperties
« dependencies

o propertyNames

o const

o not

o oneOf

49


https://github.com/zalando/nakadi
http://json-schema.org/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#schemaObject
https://github.com/OAI/OpenAPI-Specification/blob/master/schemas/v2.0/schema.json#L935-L1063

Open API redefines some keywords:

» additionalProperties: For event types that declare compatibility guarantees, there are
recommended constraints around the use of this field. See the guideline "Avoid
additionalProperties in event type definitions" for details.

Open API extends JSON-Schema with some keywords:
* readOnly: events are logically immutable, so readOnly can be considered redundant, but
harmless.

* discriminator: discriminators exist to support polymorphism and act as an alternative to one0Of.

» Ax-: patterned objects in the form of vendor extensions can be used in event type schema, but it
might be the case that general purpose validators do not understand them to enforce a
validation check, and fall back to must-ignore processing. A future version of the guidelines
may define well known vendor extensions for events.

Must: Ensure that Events are registered as Event
Types

In Zalando’s architecture, events are registered using a structure called an Event Type. The Event
Type declares standard information as follows:

* A well known event category, such as a general or data change category.

* The name of the event type.

* An owning application, and by implication, an owning team.

* A schema defining the event payload.

* The compatibility mode for the type.

Event Types allow easier discovery of event information and ensure that information is well-
structured, consistent, and can be validated.

Event type owners must pay attention to the choice of compatibility mode. The mode provides a
means to evolve thee schema. The range of modes are designed to be flexible enough so that
producers can evolve schemas while not inadvertently breaking existing consumers:

* none: Any schema modification is accepted, even if it might break existing producers or
consumers. When validating events, undefined properties are accepted unless declared in the
schema.

» forward: A schema S1 is forward compatible if the previously registered schema, S0 can read
events defined by S1 - that is, consumers can read events tagged with the latest schema version
using the previous version as long as consumers follow the robustness principle described in
the guideline’s API Design Principles.

» compatible: This means changes are fully compatible. A new schema, S1, is fully compatible
when every event published since the first schema version will validate against the latest
schema. In compatible mode, only the addition of new optional properties and definitions to an

50


https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#vendorExtensions

existing schema is allowed. Other changes are forbidden.

The compatibility mode interact with revision numbers in the schema version field, which follows
semantic versioning (MAJOR.MINOR.PATCH):

* Changing an event type with compatibility mode compatible can lead to a PATCH or MINOR
version revision. MAJOR breaking changes are not allowed.

* Changing an event type with compatibility mode forward can lead to a PATCH or MINOR version
revision. MAJOR breaking changes are not allowed.

* Changing an event type with compatibility mode none can lead to PATCH, MINOR or MAJOR level
changes.

The following examples illustrate this relations:

» Changes to the event type’s title or description are considered PATCH level.
* Adding new optional fields to an event type’s schema is considered a MINOR level change.

» All other changes are considered MAJOR level, such as renaming or removing fields, or adding
new required fields.

The core Event Type structure is shown below as an Open API object definition:

EventType:
description: |
An event type defines the schema and its runtime properties. The required
fields are the minimum set the creator of an event type is expected to
supply.
required:
- name
- cateqory
- owning_application
- schema
properties:
name:
description: |
Name of this EventType. Note: the name can encode the
owner/responsible for this EventType and ideally should follow a
naming pattern that makes it easy to read and understand.
type: string
pattern: '[a-zA-Z][-0-9a3-zA-Z_]1*(\.[a-zA-Z][-0-9a-zA-Z_]*)*'
example: order.order_cancelled, business_partner.contract
owning_application:
description: |
Name of the application (eg, as would be used in infrastructure
application or service registry) owning this ‘EventType".
type: string
example: price-service
category:
description: Defines the category of this EventType.
type: string

51



52

x-extensible-enum:
- data
- general
compatibility_mode:
description: |
The compatibility mode to evolve the schema.
type: string
x-extensible-enum:
- compatible
- forward
- none
default: forward
schema:
description: The most recent payload schema for this EventType.
type: object
properties:
version:
description: Values are based on semantic versioning (eg "1.2.1").
type: string
default: '1.0.0'
created at:
description: Creation timestamp of the schema.
type: string
readOnly: true
format: date-time
example: '1996-12-19T16:39:57-08:00"
type:
description: |
The schema language of schema definition. Currently only
json_schema (JSON Schema v@4) syntax is defined, but in the
future there could be others.
type: string
x-extensible-enum:
- json_schema
schema:
description: |
The schema as string in the syntax defined in the field type.
type: string
required:
- type
- schema
created_at:
description: When this event type was created.
type: string
pattern: date-time
updated_at:
description: When this event type was last updated.
type: string
pattern: date-time



APIs such as registries supporting event types, may extend the model, including the set of
supported categories and schema formats. For example the Nakadi API’s event category registration
also allows the declaration of validation and enrichment strategies for events, along with
supplemental information, such as how events are partitioned in the stream.

Must: Ensure Events conform to a well-known Event
Category

An event category describes a generic class of event types. The guidelines define two such
categories:

* General Event: a general purpose category.

* Data Change Event: a category used for describing changes to data entities used for data
replication based data integration.

The set of categories is expected to evolve in the future.

A category describes a predefined structure that event publishers must conform to along with
standard information about that kind of event (such as the operation for a data change event).

The General Event Category.

The structure of the General Event Category is shown below as an Open API Schema Object
definition:

GeneralEvent:

description: |
A general kind of event. Event kinds based on this event define their
custom schema payload as the top level of the document, with the
"metadata"” field being required and reserved for standard metadata. An
instance of an event based on the event type thus conforms to both the
EventMetadata definition and the custom schema definition. Previously
this category was called the Business Category.

required:
- metadata

properties:
metadata:

$ref: '#/definitions/EventMetadata’

Event types based on the General Event Category define their custom schema payload at the top-
level of the document, with the metadata field being reserved for standard information (the contents
of metadata are described further down in this section).

In the example fragment below, the reserved metadata field is shown with fields "a" and "b" being
defined as part of the custom schema:

Note:

53



* The General Event in a previous version of the guidelines was called a Business Event.
Implementation experience has shown that the category’s structure gets used for other kinds of
events, hence the name has been generalized to reflect how teams are using it.

* The General Event is still useful and recommended for the purpose of defining events that drive
a business process.

* The Nakadi broker still refers to the General Category as the Business Category and uses the
keyword "business" for event type registration. Other than that, the JSON structures are
identical.

See Must: Events must not provide sensitive customer personal data for more guidance on how to
use the category.

The Data Change Event Category.

The Data Change Event Category structure is shown below as an Open API Schema Object:

54



DataChangeEvent:
description: |
Represents a change to an entity. The required fields are those
expected to be sent by the producer, other fields may be added
by intermediaries such as a publish/subscribe broker. An instance
of an event based on the event type conforms to both the
DataChangeEvent's definition and the custom schema definition.
required:
- metadata
data_op
data_type
- data
properties:
metadata:
description: The metadata for this event.
$ref: '"#/definitions/EventMetadata’
data:
description: |
Contains custom payload for the event type. The payload must conform
to a schema associated with the event type declared in the metadata
object's ‘event_type' field.
type: object
data_type:
description: name of the (business) data entity that has been mutated
type: string
example: 'sales_order.order'
data_op:
type: string
enum: ['C', 'U', 'D', 'S"]
description: |
The type of operation executed on the entity:

C: Creation of an entity

U: An update to an entity.

D: Deletion of an entity.

S: A snapshot of an entity at a point in time.

The Data Change Event Category is structurally different to the General Event Category. It defines a
field called data for placing the custom payload information, as well as specific information related
to data changes in the data_type. In the example fragment below, the fields a and b are part of the
custom payload housed inside the data field:

See the following guidelines for more guidance on how to use the Data Change Event Category:

* Should: Use the hash partition strategy for Data Change Events
* Must: Use the General Event Category to signal steps and arrival points in business processes

* Should: Provide a means for explicit event ordering

Event Metadata.

55



The General and Data Change event categories share a common structure for metadata. The
metadata structure is shown below as an Open API Schema Object:

EventMetadata:
type: object
description: |
Carries metadata for an Event along with common fields. The required
fields are those expected to be sent by the producer, other fields may be
added by intermediaries such as publish/subscribe broker.
required:
- eid
- occurred_at
properties:
eid:
description: Identifier of this event.
type: string
format: uuid
example: '105a76d8-db49-4144-ace7-e683e8f4badb’
event_type:
description: The name of the EventType of this Event.
type: string
example: 'example.important-business-event'
occurred_at:
description: When the event was created according to the producer.
type: string
format: date-time
example: '1996-12-19T716:39:57-08:00'
received _at:
description: |
When the event was seen by an intermediary such as a broker.
type: string
readOnly: true
format: date-time
example: '1996-12-19T716:39:57-08:00'
version:
description: |
Version of the schema used for validating this event. This may be
enriched upon reception by intermediaries. This string uses semantic
versioning.
type: string
readOnly: true
parent_eids:
description: |
Event identifiers of the Event that caused the generation of
this Event. Set by the producer.
type: array
items:
type: string
format: uuid
example: '105376d8-db49-4144-ace7-e683e8f4ba46’

56



flow_id:
description: |
A flow-id for this event (corresponds to the X-Flow-Id HTTP header).
type: string
example: 'JAh6xH40QhCJ9PutIV_RYw'
partition:
description: |
Indicates the partition assigned to this Event. Used for systems
where an event type's events can be sub-divided into partitions.
type: string
example: '0'

Please note than intermediaries acting between the producer of an event and its ultimate
consumers, may perform operations like validation of events and enrichment of an event’s
metadata. For example brokers such as Nakadi, can validate and enrich events with arbitrary
additional fields that are not specified here and may set default or other values, if some of the
specified fields are not supplied. How such systems work is outside the scope of these guidelines
but producers and consumers working with such systems should be look into their documentation
for additional information.

Must: Ensure that Events define useful business
resources

Events are intended to be used by other services including business process/data analytics and
monitoring. They should be based around the resources and business processes you have defined
for your service domain and adhere to its natural lifecycle (see also Should: Model complete
business processes).

As there is a cost in creating an explosion of event types and topics, prefer to define event types that
are abstract/generic enough to be valuable for multiple use cases, and avoid publishing event types
without a clear need.

Must: Events must not provide sensitive customer
personal data

Similar to API permission scopes, there will be Event Type permissions passed via an OAuth token
supported in near future. In the meantime, teams are asked to note the following:

» Sensitive data, such as (e-mail addresses, phone numbers, etc) are subject to strict access and
data protection controls.

* Event type owners must not publish sensitive information unless it’s mandatory or necessary
to do so. For example, events sometimes need to provide personal data, such as delivery
addresses in shipment orders (as do other APIs), and this is fine.

57



Must: Use the General Event Category to signal steps
and arrival points in business processes

When publishing events that represent steps in a business process, event types must be based on
the General Event category.

All your events of a single business process will conform to the following rules:
* Business events must contain a specific identifier field (a business process id or "bp-id") similar

to flow-id to allow for efficient aggregation of all events in a business process execution.

* Business events must contain a means to correctly order events in a business process execution.
In distributed settings where monotonically increasing values (such as a high precision
timestamp that is assured to move forwards) cannot be obtained, the parent_eids data structure
allows causal relationships to be declared between events.

* Business events should only contain information that is new to the business process execution
at the specific step/arrival point.

* Each business process sequence should be started by a business event containing all relevant
context information.

* Business events must be published reliably by the service.
At the moment we cannot state whether it’s best practice to publish all the events for a business
process using a single event type and represent the specific steps with a state field, or whether to

use multiple event types to represent each step. For now we suggest assessing each option and
sticking to one for a given business process.

Must: Use Data Change Events to signal mutations

When publishing events that represents created, updated, or deleted data, change event types must
be based on the Data Change Event category.

* Change events must identify the changed entity to allow aggregation of all related events for the
entity.
* Change events Must: Use Data Change Events to signal mutations.

* Change events must be published reliably by the service.

Should: Provide a means for explicit event ordering

Some common error cases may require event consumers to reconstruct event streams or replay
events from a position within the stream. Events should therefore contain a way to restore their
partial order of occurrence.

This can be done - among other ways - by adding - a strictly monotonically increasing entity version
(e.g. as created by a database) to allow for partial ordering of all events for an entity - a strictly
monotonically increasing message counter

58



System timestamps are not necessarily a good choice, since exact synchronization of clocks in
distributed systems is difficult, two events may occur in the same microsecond and system clocks
may jump backward or forward to compensate drifts or leap-seconds. If you use system timestamps
to indicate event ordering, you must carefully ensure that your designated event order is not
messed up by these effects.

Note that basing events on data structures that can be converged upon in a distributed setting
(such as CRDTs, logical clocks and vector clocks) is outside the scope of this guidance.

Should: Use the hash partition strategy for Data
Change Events

The hash partition strategy allows a producer to define which fields in an event are used as input to
compute a logical partition the event should be added to. Partitions are useful as they allow
supporting systems to scale their throughput while provide local ordering for event entities.

The hash option is particulary useful for data changes as it allows all related events for an entity to
be consistently assigned to a partition, providing a relative ordered stream of events for that entity.
This is because while each partition has a total ordering, ordering across partitions is not assured
by a supporting system, thus it is possible for events sent across partitions to appear in a different
order to consumers that the order they arrived at the server.

When using the hash strategy the partition key in almost all cases should represent the entity being
changed and not a per event or change identifier such as the eid field or a timestamp. This ensures
data changes arrive at the same partition for a given entity and can be consumed effectively by
clients.

There may be exceptional cases where data change events could have their partition strategy set to
be the producer defined or random options, but generally hash is the right option - that is while the
guidelines here are a "should", they can be read as "must, unless you have a very good reason".

Should: Ensure that Data Change Events match API
representations

A data change event’s representation of an entity should correspond to the REST API
representation.

There’s value in having the fewest number of published structures for a service. Consumers of the
service will be working with fewer representations, and the service owners will have less API
surface to maintain. In particular, you should only publish events that are interesting in the
domain and abstract away from implementation or local details - there’s no need to reflect every
change that happens within your system.

There are cases where it could make sense to define data change events that don’t directly
correspond to your API resource representations. Some examples are -

* Where the API resource representations are very different from the datastore representation,
but the physical data are easier to reliably process for data integration.

59


https://en.wikipedia.org/wiki/Conflict-free_replicated_data_type
https://en.wikipedia.org/wiki/Logical_clock
https://en.wikipedia.org/wiki/Vector_clock

» Publishing aggregated data. For example a data change to an individual entity might cause an
event to be published that contains a coarser representation than that defined for an API

* Events that are the result of a computation, such as a matching algorithm, or the generation of
enriched data, and which might not be stored as entity by the service.

Must: Permissions on events must correspond to API
permissions

If a resource can be read synchronously via a REST API and read asynchronously via an event, the
same read-permission must apply: We want to protect access to data, not the way data is accessed.

Must: Indicate ownership of Event Types

Event definitions must have clear ownership - this can be indicated via the owning_application field
of the EventType.

Typically there is one producer application, which owns the EventType and is responsible for its
definition, akin to how RESTful API definitions are managed. However, the owner may also be a
particular service from a set of multiple services that are producing the same kind of event.

Must: Define Event Payloads in accordance with the
overall Guidelines

Events must be consistent with other API data and the API Guidelines in general.

Everything expressed in the [introduction] to these Guidelines is applicable to event data
interchange between services. This is because our events, just like our APIs, represent a
commitment to express what our systems do and designing high-quality, useful events allows us to
develop new and interesting products and services.

What distinguishes events from other kinds of data is the delivery style used, asynchronous
publish-subscribe messaging. But there is no reason why they could not be made available using a
REST API, for example via a search request or as a paginated feed, and it will be common to base
events on the models created for the service’s REST APL

The following existing guideline sections are applicable to events:

* General Guidelines
* API Naming

* Data Formats

* Common Data Types

» Hypermedia

60



Must: Maintain backwards compatibility for Events

Changes to events must be based around making additive and backward compatible changes. This
follows the guideline, "Must: Don’t Break Backward Compatibility" from the Compatibility
guidelines.

In the context of events, compatibility issues are complicated by the fact that producers and
consumers of events are highly asynchronous and can’t use content-negotiation techniques that are
available to REST style clients and servers. This places a higher bar on producers to maintain
compatibility as they will not be in a position to serve versioned media types on demand.

For event schema, these are considered backward compatible changes, as seen by consumers -

* Adding new optional fields to JSON objects.

Changing the order of fields (field order in objects is arbitrary).

Changing the order of values with same type in an array.
* Removing optional fields.

* Removing an individual value from an enumeration.
These are considered backwards-incompatible changes, as seen by consumers -

* Removing required fields from JSON objects.

* Changing the default value of a field.

* Changing the type of a field, object, enum or array.

* Changing the order of values with different type in an array (also known as a tuple).

* Adding a new optional field to redefine the meaning of an existing field (also known as a co-
occurrence constraint).

* Adding a value to an enumeration (note that x-extensible-enum is not available in JSON Schema)

Should: Avoid additionalProperties in event type
definitions

Event type schema should avoid using additionalProperties declarations, in order to support
schema evolution.

Events are often intermediated by publish/subscribe systems and are commonly captured in logs or
long term storage to be read later. In particular, the schemas used by publishers and consumers can
drift over time. As a result, compatibility and extensibility issues that happen less frequently with
client-server style APIs become important and regular considerations for event design. The
guidelines recommend the following to enable event schema evolution:

* Publishers who intend to provide compatibility and allow their schemas to evolve safely over
time must not declare an additionalProperties field with a value of true (i.e., a wildcard
extension point). Instead they must define new optional fields and update their schemas in
advance of publishing those fields.

61



* Consumers must ignore fields they cannot process and not raise errors. This can happen if they
are processing events with an older copy of the event schema than the one containing the new
definitions specified by the publishers.

The above constraint does not mean fields can never be added in future revisions of an event type
schema - additive compatible changes are allowed, only that the new schema for an event type
must define the field first before it is published within an event. By the same turn the consumer
must ignore fields it does not know about from its copy of the schema, just as they would as an API
client - that is, they cannot treat the absence of an additionalProperties field as though the event
type schema was closed for extension.

Requiring event publishers to define their fields ahead of publishing avoids the problem of field
redefinition. This is when a publisher defines a field to be of a different type that was already being
emitted, or, is changing the type of an undefined field. Both of these are prevented by not using
additionalProperties.

See also "Treat Open API Definitions As Open For Extension By Default"
in the Compatibility section for further guidelines on the use of additionalProperties.

Must: Use unique Event identifiers

The eid (event identifier) value of an event must be unique.

The eid property is part of the standard metadata for an event and gives the event an identifier.
Producing clients must generate this value when sending an event and it must be guaranteed to be
unique from the perspective of the owning application. In particular events within a given event
type’s stream must have unique identifiers. This allows consumers to process the eid to assert the
event is unique and use it as an idempotency check.

Note that uniqueness checking of the eid might be not enforced by systems consuming events and it
is the responsibility of the producer to ensure event identifiers do in fact distinctly identify events.
A straightforward way to create a unique identifier for an event is to generate a UUID value.

Should: Design for idempotent out-of-order processing

Events that are designed for idempotent out-of-order processing allow for extremely resilient
systems: If processing an event fails, consumers and producers can skip/delay/retry it without
stopping the world or corrupting the processing result.

To enable this freedom of processing, you must explicitly design for idempotent out-of-order
processing: Either your events must contain enough information to infer their original order
during consumption or your domain must be designed in a way that order becomes irrelevant.

As common example similar to data change events, idempotent out-of-order processing can be
supported by sending the following information:

* the process/resource/entity identifier,

* a monotonically increasing ordering key and

62



* the process/resource state after the change.

A receiver that is interested in the current state can then ignore events that are older than the last
processed event of each resource. A receiver interested in the history of a resource can use the
ordering key to recreate a (partially) ordered sequence of events.

Must: Follow conventions for Event Type names

Event types can follow these naming conventions (each convention has its own should, must or
could conformance level) -

* Event type names must be url-safe. This is because the event type names may appear in URLs
published by other systems and APISs.

* Event type names should be lowercase words and numbers, using hyphens, underscores or
periods as separators.

Must: Prepare for duplicate Events

Event consumers must be able to process duplicate events.

Most message brokers and data streaming systems offer “at-least-once” delivery. That is, one
particular event is delivered to the consumers one or more times. Other circumstances can also
cause duplicate events.

For example, these situations occur if the publisher sends an event and doesn’t receive the
acknowledgment (e.g. due to a network issue). In this case, the publisher will try to send the same
event again. This leads to two identical events in the event bus which have to be processed by the
consumers. Similar conditions can appear on consumer side: an event has been processed
successfully, but the consumer fails to confirm the processing.

Appendix A: References

This section collects links to documents to which we refer, and base our guidelines on.

OpenAPI Specification

* OpenAPI Specification

Publications, specifications and standards

* RFC 3339: Date and Time on the Internet: Timestamps

RFC 5988: Web Linking

RFC 7159: The JavaScript Object Notation (JSON) Data Interchange Format

RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing

RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content

63


https://github.com/OAI/OpenAPI-Specification/
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc5988
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231

RFC 7807: Problem Details for HTTP APIs

ISO 8601: Date and time format

ISO 3166-1 alpha-2: Two letter country codes

ISO 639-1: Two letter language codes

ISO 4217: Currency codes

BCP 47: Tags for Identifying Languages

Dissertations

* Roy Thomas Fielding - Architectural Styles and the Design of Network-Based Software
Architectures. This is the text which defines what REST is.

Books

* REST in Practice: Hypermedia and Systems Architecture
* Build APIs You Won’t Hate
* InfoQ eBook - Web APIs: From Start to Finish

Blogs

* Lessons-learned blog: Thoughts on RESTful API Design

Appendix B: Tooling

This is not a part of the actual guidelines, but might be helpful for following them. Using a tool
mentioned here doesn’t automatically ensure you follow the guidelines.

API First Integrations

The following frameworks were specifically designed to support the API First workflow with
OpenAPI YAML files (sorted alphabetically):

* Connexion: OpenAPI First framework for Python on top of Flask

 Friboo: utility library to write microservices in Clojure with support for Swagger and OAuth

» Api-First-Hand: API-First Play Bootstrapping Tool for Swagger/OpenAPI specs

» Swagger Codegen: template-driven engine to generate client code in different languages by
parsing Swagger Resource Declaration

» Swagger Codegen Tooling: plugin for Maven that generates pieces of code from OpenAPI
specification

» Swagger Plugin for Intelli] IDEA: plugin to help you easily edit Swagger specification files inside
Intelli] IDEA

64


https://tools.ietf.org/html/rfc7807
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_4217
https://tools.ietf.org/html/bcp47
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.amazon.de/REST-Practice-Hypermedia-Systems-Architecture/dp/0596805829
https://leanpub.com/build-apis-you-wont-hate
http://www.infoq.com/minibooks/emag-web-api
http://restful-api-design.readthedocs.org/en/latest/
https://github.com/zalando/connexion
https://github.com/zalando-stups/friboo
https://github.com/zalando/api-first-hand
https://github.com/swagger-api/swagger-codegen
https://github.com/swagger-api/swagger-codegen
https://github.com/zalando-stups/swagger-codegen-tooling
https://github.com/zalando-stups/swagger-codegen-tooling
https://github.com/zalando/intellij-swagger
https://github.com/zalando/intellij-swagger

The Swagger/OpenAPI homepage lists more Community-Driven Language Integrations, but most of
them do not fit our API First approach.

Support Libraries

These utility libraries support you in implementing various parts of our RESTful API guidelines
(sorted alphabetically):

* Problem: Java library that implements application/problem+json

* Problems for Spring Web MVC: library for handling Problems in Spring Web MVC

» Jackson Datatype Money: extension module to properly support datatypes of javax.money

JSON fields: framework for limiting fields of JSON objects exposed by Rest APIs

Tracer: call tracing and log correlation in distributed systems

TWINTIP: API definition crawler for the STUPS ecosystem

TWINTIP Spring Integration: API discovery endpoint for Spring Web MVC

Appendix C: Changelog

This change log only contains major changes made after October 2016.

Non-major changes are editorial-only changes or minor changes of existing guidelines, e.g. adding
new error code. Major changes are changes that come with additional obligations, or even change
an existing guideline obligation. The latter changes are additionally labeled with "Rule Change"
here.

To see a list of all changes, please have a look at the commit list in Github.

Rule Changes

* 2017-08-22: Migration to Asciidoc

» 2017-07-20: Be more precise on client vs. server obligations for compatible API extensions.
* 2017-06-06: Made money object guideline clearer.

* 2017-05-17: Added guideline on query parameter collection format.

* 2017-05-10: Added the convention of using RFC2119 to describe guideline levels, and replaced
book.could with book.may.

* 2017-03-30: Added rule that permissions on resources in events must correspond to permissions
on API resources

* 2017-03-30: Added rule that APIs should be modelled around business processes

* 2017-02-28: Extended information about how to reference sub-resources and the usage of
composite identifiers in the Must: Use Domain-Specific Resource Names part.

* 2017-02-22: Added guidance for conditional requests with If-Match/If-None-Match

65


http://swagger.io/open-source-integrations/
https://github.com/zalando/problem
https://github.com/zalando/problem-spring-web
https://github.com/zalando/jackson-datatype-money
https://github.com/zalando-incubator/json-fields
https://github.com/zalando/tracer
https://github.com/zalando-stups/twintip-crawler
https://github.com/zalando/twintip-spring-web
https://github.com/zalando/restful-api-guidelines/commits/master

66

2017-02-02:

2017-02-01

2017-01-18:
2017-01-05:
2016-12-07:

2016-12-06

2016-12-04:
2016-10-13:
2016-10-10:

Added guideline for batch and bulk request

: May: Use Content-Location Header

Removed "Avoid Javascript Keywords" rule
Clarification on the usage of the term "REST/RESTful"

Introduced "API as a Product" principle

: New guideline: "Should Only Use UUIDs If Necessary"

Changed OAuth flow example from implicit to password in Security.
Must: Define Format for Type Number and Integer

Introduced the changelog. From now on all rule changes on API guidelines will be

recorded here.



	DNT RESTful API and Event Scheme Guidelines
	Table of Contents
	1. DNT RESTful API and Event Scheme Guidelines
	Conventions Used in These Guidelines
	Zalando specific information

	2. Principles
	API Design Principles

	3. General Guidelines
	Must: Provide API Reference Definition using OpenAPI
	Should: Provide User Manual Documentation
	Must: Write APIs in U.S. English

	4. Security
	Must: Secure Endpoints with DNT Connect

	5. Compatibility
	Must: Don’t Break Backward Compatibility
	Should: Prefer Compatible Extensions
	Must: Prepare Clients To Not Crash On Compatible API Extensions
	Should: Design APIs Conservatively
	Must: Always Return JSON Objects As Top-Level Data Structures To Support Extensibility
	Must: Treat Open API Definitions As Open For Extension By Default
	Should: Used Open-Ended List of Values (x-extensible-enum) Instead of Enumerations
	Should: Avoid Versioning
	Must: Use Media Type Versioning
	Must: Do Not Use URI Versioning
	Should: Provide Version Information in OpenAPI Documentation

	6. JSON Guidelines
	Must: Use Consistent Property Names
	Must: Property names must be snake_case (and never camelCase)
	Must: Property names must match ^[a-z_][a-z_0-9]*$
	Should: Array names should be pluralized
	Must: Use Consistent Property Values
	Must: Boolean property values must not be null
	Should: Null values should have their fields removed
	Should: Empty array values should not be null
	Should: Enumerations should be represented as Strings
	Should: Date property values should conform to RFC 3399
	May: Time durations and intervals could conform to ISO 8601
	May: Standards could be used for Language, Country and Currency

	7. API Naming
	Must: Use lowercase separate words with hyphens for Path Segments
	Must: Use snake_case (never camelCase) for Query Parameters
	Must: Use Hyphenated HTTP Headers
	Should: Prefer Hyphenated-Pascal-Case for HTTP header Fields
	May: Use Standardized Headers
	Must: Pluralize Resource Names
	May: Use /api as first Path Segment
	Must: Avoid Trailing Slashes
	May: Use Conventional Query Strings

	8. Resources
	Must: Avoid Actions — Think About Resources
	Should: Model complete business processes
	Should: Define useful resources
	Must: Keep URLs Verb-Free
	Must: Use Domain-Specific Resource Names
	Must: Identify resources and Sub-Resources via Path Segments
	Should: Only Use UUIDs If Necessary
	May: Consider Using (Non-) Nested URLs
	Should: Limit number of Resources
	Should: Limit number of Sub-Resource Levels

	9. HTTP
	Must: Use HTTP Methods Correctly
	Must: Fulfill Safeness and Idempotency Properties
	Must: Use Specific HTTP Status Codes
	Must: Provide Error Documentation
	Must: Use 207 for Batch or Bulk Requests
	Must: Use 429 with Headers for Rate Limits
	Should: Explicitly define the Collection Format of Query Parameters

	10. Performance
	Should: Reduce Bandwidth Needs and Improve Responsiveness
	Should: Use gzip Compression
	Should: Support Filtering of Resource Fields
	Should: Allow Optional Embedding of Sub-Resources

	11. Pagination
	Must: Support Pagination
	Should: Prefer Cursor-Based Pagination, Avoid Offset-Based Pagination
	May: Use Pagination Links Where Applicable

	12. Hypermedia
	Must: Use REST Maturity Level 2
	May: Use REST Maturity Level 3 - HATEOAS
	Must: Use Common Hypertext Controls
	Should: Use Simple Hypertext Controls for Pagination and Self-References
	Must: Not Use Link Headers with JSON entities

	13. Data Formats
	Must: Use JSON to Encode Structured Data
	May: Use non JSON Media Types for Binary Data or Alternative Content Representations
	Must: Use Standard Date and Time Formats
	May: Use Standards for Country, Language and Currency Codes
	Must: Define Format for Type Number and Integer
	Should: Prefer standard Media type name application/json

	14. Common Data Types
	Should: Use a Common Money Object
	Must: Use common field names and semantics
	Must: Follow Hypertext Control Conventions
	Must: Use Problem JSON
	Must: Do not expose Stack Traces

	15. Common Headers
	Must: Use Content Headers Correctly
	May: Use Content-Location Header
	Should: Use Location Header instead of Content-Location Header
	May: Use the Prefer header to indicate processing preferences
	May: Consider using ETag together with If-(None-)Match header

	16. Proprietary Headers
	Must: Use Only the Specified Proprietary Zalando Headers
	Must: Propagate Proprietary Headers

	17. Deprecation
	Must: Obtain Approval of Clients
	Must: External Partners Must Agree on Deprecation Timespan
	Must: Reflect Deprecation in API Definition
	Must: Monitor Usage of Deprecated APIs
	Should: Add a Warning Header to Responses
	Should: Add Monitoring for Warning Header
	Must: Not Start Using Deprecated APIs

	18. API Operation
	Must: Provide Online Access to OpenAPI Reference Definition
	Should: Monitor API Usage

	19. Events
	Must: Treat Events as part of the service interface
	Must: Make Events available for review
	Must: Ensure Event Type schemas conform to Open API’s Schema Object
	Must: Ensure that Events are registered as Event Types
	Must: Ensure Events conform to a well-known Event Category
	Must: Ensure that Events define useful business resources
	Must: Events must not provide sensitive customer personal data
	Must: Use the General Event Category to signal steps and arrival points in business processes
	Must: Use Data Change Events to signal mutations
	Should: Provide a means for explicit event ordering
	Should: Use the hash partition strategy for Data Change Events
	Should: Ensure that Data Change Events match API representations
	Must: Permissions on events must correspond to API permissions
	Must: Indicate ownership of Event Types
	Must: Define Event Payloads in accordance with the overall Guidelines
	Must: Maintain backwards compatibility for Events
	Should: Avoid additionalProperties in event type definitions
	Must: Use unique Event identifiers
	Should: Design for idempotent out-of-order processing
	Must: Follow conventions for Event Type names
	Must: Prepare for duplicate Events

	Appendix A: References
	OpenAPI Specification
	Publications, specifications and standards
	Dissertations
	Books
	Blogs

	Appendix B: Tooling
	API First Integrations
	Support Libraries

	Appendix C: Changelog
	Rule Changes


